http://iet.metastore.ingenta.com
1887

Proximity effect modelling for cables of finite length using the hybrid partial element equivalent circuit and artificial neural network method

Proximity effect modelling for cables of finite length using the hybrid partial element equivalent circuit and artificial neural network method

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents an efficient method for modelling the proximity effect in complex conductor systems. This method is based on a discretisation partial element equivalent circuit (DPEEC) scheme in combination with artificial neural network (ANN). Circuit parameters of a conductor system are obtained with DPEEC at low frequency. ANN trained with the low-frequency parameters is employed to predict proximity effect at high frequencies. The proposed method significantly improves the calculation efficiency in both time and memory consuming. The method is validated by comparing with the result obtained by MoM-SO. Case studies of closely-spaced cables with different configurations are analysed. It is applied to evaluate the lightning current in typical cable installations. The comparison among different configurations reveals that the proximity effect leads to uneven current distribution in cables. Cable modelling without considering the proximity effect could lead to significant errors in transient current analysis.

References

    1. 1)
      • 1. Kaloudas, C. G., Gouramanis, K. V., Stasinos, K., et al: ‘Methodology for the selection of long-medium-voltage power cable configurations’, IET Gener. Transm. Distrib., 2013, 7, (5), pp. 526536.
    2. 2)
      • 2. Chen, H., Qin, Z., Du, Y., et al: ‘TAES: a PEEC-based tool for transient simulation’. 2016 Asia-Pacific Int. Symp. on Electromagnetic Compatibility (APEMC), Shenzhen, China, May 2016, vol. 1, pp. 676678.
    3. 3)
      • 3. Martins, T. F. R. D., Lima, A. C. S., Carneiro, S.: ‘Effect of approximate impedance formulae on the accuracy of transmission line modelling’, IET Gener. Transm. Distrib., 2007, 1, (4), pp. 534539.
    4. 4)
      • 4. Tzinevrakis, A. E., Mimos, E. I., Tsanakas, D. K.: ‘Electric field analytical formulas for single-circuit power lines with a horizontal arrangement of conductors’, IET Gener. Transm. Distrib., 2009, 3, (6), pp. 509520.
    5. 5)
      • 5. Papadopoulos, T. A., Chrysochos, A. I., Papagiannis, G. K.: ‘Analytical study of the frequency-dependent earth conduction effects on underground power cables’, IET Gener. Transm. Distrib., 2013, 7, (3), pp. 276287.
    6. 6)
      • 6. Gudmundsdottir, U. S.: ‘Proximity effect in fast transient simulations of an underground transmission cable’, Electr. Power Syst. Res., 2014, 115, pp. 5056.
    7. 7)
      • 7. Costa, E. C. M., Kurokawa, S., Pissolato, J., et al: ‘Efficient procedure to evaluate electromagnetic transients on three-phase transmission lines’, IET Gener. Transm. Distrib., 2010, 4, (9), pp. 10691081.
    8. 8)
      • 8. Papadopoulos, T. A., Tsiamitros, D. A., Papagiannis, G. K.: ‘Earth return admittances and impedances of underground cables in non-homogeneous earth’, IET Gener. Transm. Distrib., 2011, 5, (2), pp. 161171.
    9. 9)
      • 9. Riba, J.-R.: ‘Analysis of formulas to calculate the AC resistance of different conductors’ configurations’, Electr. Power Syst. Res., 2015, 127, pp. 93100.
    10. 10)
      • 10. Patel, U. R., Gustavsen, B., Triverio, P.: ‘An equivalent surface current approach for the computation of the series impedance of power cables with inclusion of skin and proximity effects’, IEEE Trans. Power Deliv., 2013, 28, (4), pp. 24742482.
    11. 11)
      • 11. Ametani, A., Kawamura, T.: ‘A method of a lightning surge analysis recommended in Japan using EMTP’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 867875.
    12. 12)
      • 12. Antonini, G., Cristina, S., Orlandi, A.: ‘PEEC modeling of lightning protection systems and coupling to coaxial cables’, IEEE Trans. Electromagn. Compat., 1998, 40, (4), pp. 481491.
    13. 13)
      • 13. Chen, H., Du, Y., Chen, M.: ‘Lightning current among closely-spaced cables’. 2014 Int. Conf. on Lightning Protection (ICLP), Shanghai, China, October 2014, pp. 412417.
    14. 14)
      • 14. Chen, H., Du, Y., Chen, M.: ‘Lightning transient analysis of radio base stations’, IEEE Trans. Power Deliv., 2017, accepted, Doi: 10.1109/tpwrd.2017.2788039.
    15. 15)
      • 15. Cios, K. J., Pedrycz, W., Swiniarski, R. W., et al: ‘Data mining: a knowledge discovery approach’ (Springer Science & Business Media, New York, NY, USA, 2007).
    16. 16)
      • 16. Demuth, H. B., Beale, M. H., De Jess, O., et al: ‘Neural network design’ (Martin Hagan, 2014).
    17. 17)
      • 17. Zhang, Q. J., Gupta, K. C., Devabhaktuni, V. K.: ‘Artificial neural networks for RF and microwave design-from theory to practice’, IEEE Trans. Microw. Theory Tech., 2003, 51, (4), pp. 13391350.
    18. 18)
      • 18. Rayas-Sanchez, J. E.: ‘EM-based optimization of microwave circuits using artificial neural networks: the state-of-the-art’, IEEE Trans. Microw. Theory Tech., 2004, 52, (1), pp. 420435.
    19. 19)
      • 19. Schelkunoff, S. A.: ‘The electromagnetic theory of coaxial transmission lines and cylindrical shields’, Bell Syst. Tech. J., 1934, 13, (4), pp. 532579.
    20. 20)
      • 20. Xu, L., Du, Y., Zhou, Q. B.: ‘The magnetic field and induced current arising from a cylindrical shell loop with an unbalanced current’, Electr. Power Syst. Res., 2004, 71, (1), pp. 2126.
    21. 21)
      • 21. Paul, C. R.: ‘Inductance: loop and partial’ (Wiley, Hoboken, NJ, USA, 2011).
    22. 22)
      • 22. Grover, F. W.: ‘Inductance calculations: working formulas and tables’ (Dover, New York, 1946).
    23. 23)
      • 23. Jonguk, K., Hyun-Tai, K., Kwi-Soo, K., et al: ‘An equivalent circuit model for multi-port networks’. 2007 European Microwave Conf., Munich, Germany, October 2007, pp. 901904.
    24. 24)
      • 24. Gustavsen, B., Semlyen, A.: ‘Rational approximation of frequency domain responses by vector fitting’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 10521061.
    25. 25)
      • 25. Beerten, J., D'Arco, S., Suul, J. A.: ‘Frequency-dependent cable modelling for small-signal stability analysis of VSC-HVDC systems’, IET Gener. Transm. Distrib., 2016, 10, (6), pp. 13701381.
    26. 26)
      • 26. Antonini, G.: ‘SPICE equivalent circuits of frequency-domain responses’, IEEE Trans. Electromagn. Compat., 2003, 45, (3), pp. 502512.
    27. 27)
      • 27. Lima, A. C., Gustavsen, B., Fernandes, A. B.: ‘Inaccuracies in network realization of rational models due to finite precision of RLC branches’. Int. conf. on Power Syst. Transients, IPST, Lyon, France, 2007, pp. 47.
    28. 28)
      • 28. IEC 62305-1: ‘Protection against lightning: part I general principles’, 2010.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5392
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5392
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address