http://iet.metastore.ingenta.com
1887

Wind-thermal dynamic economic emission dispatch with a hybrid multi-objective algorithm based on wind speed statistical analysis

Wind-thermal dynamic economic emission dispatch with a hybrid multi-objective algorithm based on wind speed statistical analysis

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Based on the analysis on the uncertain nature of wind power output, the Weibull distribution parameters of regional wind speed at different periods are calculated to obtain the probability density function (PDF) and the cumulative distribution function (CDF) of the wind power. The spinning reserve (SR) requirements for wind power incorporation are determined according to the obtained PDF and CDF, and by converting the wind power into a chance constrained form, a model for dynamic economic emission dispatch with wind power is constructed. A hybrid multi-objective algorithm that integrates differential evolution (DE) and particle swarm optimisation (PSO) algorithm is put forward to solve the proposed model. The algorithm is implemented based on the Pareto dominance theory and a dynamic external archive set, and fully exploits the advantages of DE and PSO. An improved calculation method of crowding distance and Pareto solution set reduction rule are also employed to enhance the performance of the proposed algorithm. Also, three performance indicators are introduced to evaluate the performance of the algorithm. Two distinct test systems are performed to verify the proposed model and algorithm, and the results show that they are effective and reasonable.

References

    1. 1)
      • 1. Zaman, M. F., Elsayed, S. M., Ray, T., et al: ‘Evolutionary algorithms for dynamic economic dispatch problems’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 14861495.
    2. 2)
      • 2. Wang, M. Q., Gooi, H. B., Chen, S. X., et al: ‘A mixed integer quadratic programming for dynamic economic dispatch with valve point effect’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 20972106.
    3. 3)
      • 3. Liu, Y., Nair, N. K. C.: ‘A two-stage stochastic dynamic economic dispatch model considering wind uncertainty’, IEEE Trans. Sustain. Energy, 2016, 7, (2), pp. 819829.
    4. 4)
      • 4. Kim, C., Gui, Y., Chung, C. C., et al: ‘Model predictive control in dynamic economic dispatch using Weibull distribution’. 2013 IEEE Power and Energy Society General Meeting (PES), Vancouver, BC, Canada, July 2013.
    5. 5)
      • 5. Alham, M. H., Elshahed, M., Ibrahim, D. K., et al: ‘A dynamic economic emission dispatch considering wind power uncertainty incorporating energy storage system and demand side management’, Renew. Energy, 2016, 96, pp. 800811.
    6. 6)
      • 6. Guo, C. X., Zhan, J. P., Wu, Q. H.: ‘Dynamic economic emission dispatch based on group search optimizer with multiple producers’, Electr. Power Syst. Res., 2012, 86, (4), pp. 816.
    7. 7)
      • 7. Jiang, W., Yan, Z., Hu, Z.: ‘A novel improved particle swarm optimization approach for dynamic economic dispatch incorporating wind power’, Electr. Power Syst. Res., 2010, 39, (5), pp. 461477.
    8. 8)
      • 8. Wei, Z., Hui, S., Hong, G. U., et al: ‘Dynamic economic dispatch of wind integrated power systems based on risk reserve constraints’, Proc. CSEE, 2012, 32, (1), pp. 4755.
    9. 9)
      • 9. Qu, B. Y., Liang, J. J., Zhu, Y. S., et al: ‘Economic emission dispatch problems with stochastic wind power using summation based multi-objective evolutionary algorithm’, Inf. Sci., 2016, 351, pp. 4866.
    10. 10)
      • 10. Zhu, Y. S., Wang, J., Qu, B. Y.: ‘Multi-objective economic emission dispatch considering wind power using evolutionary algorithm based on decomposition’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 434445.
    11. 11)
      • 11. Cheng, W. S., Zhang, H. F.: ‘A dynamic economic dispatch model incorporating wind power based on chance constrained programming’, Energies, 2015, 8, (1), pp. 233256.
    12. 12)
      • 12. Zhang, N., Hu, Z. G., Han, X., et al: ‘A fuzzy chance-constrained program for unit commitment problem considering demand response, electric vehicle and wind power’, Int. J. Electr. Power Energy Syst., 2015, 65, pp. 201209.
    13. 13)
      • 13. Lorca, A., Sun, X. A.: ‘Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 17021713.
    14. 14)
      • 14. Peng, C. H., Xie, P., Pan, L., et al: ‘Flexible robust optimization dispatch for hybrid wind/photovoltaic/hydro/thermal power system’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 751762.
    15. 15)
      • 15. Carta, J. A., Ramírez, P.: ‘Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions’, Renew. Energy, 2007, 32, pp. 518531.
    16. 16)
      • 16. Akdağ, S. A., Dinler, A.: ‘A new method to estimate Weibull parameters for wind energy applications’, Energy Convers. Manage., 2009, 50, (7), pp. 17611766.
    17. 17)
      • 17. Fu, Y. M., Liu, M. B., Li, L. C.: ‘Multiobjective stochastic economic dispatch with variable wind generation using scenario-based decomposition and asynchronous block iteration’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 139149.
    18. 18)
      • 18. Jubril, A. M., Komolafe, O. A., Alawode, K. O.: ‘Solving multi-objective economic dispatch problem via semidefinite programming’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 20562064.
    19. 19)
      • 19. Younes, M., Khodja, F., Kherfane, R. L.: ‘Multi-objective economic emission dispatch solution using hybrid FFA (firefly algorithm) and considering wind power penetration’, Energy, 2014, 67, pp. 595606.
    20. 20)
      • 20. Jeddi, B., Vahidinasab, V.: ‘A modified harmony search method for environmental/economic load dispatch of real-world power systems’, Energy Convers. Manage., 2014, 78, pp. 661675.
    21. 21)
      • 21. Basu, M.: ‘Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II’, Int. J. Electr. Power Energy Syst., 2008, 30, (2), pp. 140149.
    22. 22)
      • 22. Kamjoo, A., Maheri, A., Dizqah, A. M., et al: ‘Multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming’, Int. J. Electr. Power Energy Syst., 2016, 74, pp. 187194.
    23. 23)
      • 23. Abido, M. A.: ‘Multiobjective particle swarm optimization for environmental/economic dispatch problem’, Electr. Power Syst. Res., 2009, 79, (7), pp. 11051113.
    24. 24)
      • 24. Lu, Y. L., Zhou, J. Z., Qin, H., et al: ‘Environmental/economic dispatch problem of power system by using an enhanced multi-objective differential evolution algorithm’, Energy Convers. Manage., 2011, 52, (2), pp. 11751183.
    25. 25)
      • 25. Basu, M.: ‘Economic environmental dispatch using multi-objective differential evolution’, Appl. Soft Comput., 2011, 11, (2), pp. 28452853.
    26. 26)
      • 26. Parouha, R. P., Das, K. N.: ‘DPD: an intelligent parallel hybrid algorithm for economic load dispatch problems with various practical constraints’, Expert Syst. Appl., 2016, 63, pp. 295309.
    27. 27)
      • 27. Boukhezzar, B., Siguerdidjane, H., Maureen, H. M.: ‘Nonlinear control of variable-speed wind turbines for generator torque limiting and power optimization’, ASME J. Sol. Energy Eng., 2006, 128, (4), pp. 516530.
    28. 28)
      • 28. Liu, X.: ‘Economic load dispatch constrained by wind power availability: a wait-and-see approach’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 347355.
    29. 29)
      • 29. Farag, A., Al-Baiyat, S., Cheng, T. C.: ‘Economic load dispatch multiobjective optimization procedures using linear programming techniques’, IEEE Trans. Power Syst., 1995, 10, (2), pp. 731738.
    30. 30)
      • 30. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. IEEE Int. Conf. on Neural Networks Proc., Perth, WA, Australia, 27 November–1 December 1995, vol. 4, pp. 19421948.
    31. 31)
      • 31. Deb, K., Kalyanmoy, D.: ‘Multiobjective optimization using evolutionary algorithms’ (John Wiley & Sons, Inc., New York, NY, USA, 2001).
    32. 32)
      • 32. Zitzler, E., Thiele, L.: ‘Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach’, IEEE Trans. Evol. Comput., 1999, 3, (4), pp. 257271.
    33. 33)
      • 33. Coello Coello, C. A.: ‘Twenty years of evolutionary multi-objective optimization: a historical view of the field’, IEEE Comput. Intell. Mag., 2006, 1, (1), pp. 2836.
    34. 34)
      • 34. Wu, L. H., Wang, Y. N., Yuan, X. F., et al: ‘Environmental/economic power dispatch problem using multi-objective differential evolution algorithm’, Electr. Power Syst. Res., 2010, 80, (9), pp. 11711181.
    35. 35)
      • 35. Farina, M., Amato, P.: ‘A fuzzy definition of ‘optimality’ for many-criteria optimization problems’, IEEE Trans. Syst. Man Cybern., 2004, 34, (3), pp. 315326.
    36. 36)
      • 36. Attaviriyanupap, P., Kita, H., Tanaka, E., et al: ‘A hybrid EP and SQP for dynamic economic dispatch with nonsmooth fuel cost function’, IEEE Trans. Power Syst., 2002, 22, (4), pp. 411416.
    37. 37)
      • 37. Boggs, P. T., Tolle, J. W.: ‘Sequential quadratic programming’, Acta Numer., 1995, 4, (4), pp. 151.
    38. 38)
      • 38. Basu, M.: ‘Artificial immune system for dynamic economic dispatch’, Int. J. Electr. Power Energy Syst., 2011, 33, (1), pp. 131136.
    39. 39)
      • 39. Deb, K., Pratap, A., Agarwal, S.: ‘A fast and elitist multi-objective genetic algorithm: NSGA-II’, IEEE Trans. Evol. Comput., 2002, 6, pp. 182197.
    40. 40)
      • 40. Zitzler, E., Deb, K., Thiele, L.: ‘Comparison of multiobjective evolutionary algorithms: empirical results’, Evol. Comput., 2000, 8, pp. 173195.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5364
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5364
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address