http://iet.metastore.ingenta.com
1887

Effect of load models on scheduling of VVC devices in a distribution network

Effect of load models on scheduling of VVC devices in a distribution network

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Volt/VAr optimisation (VVO) is one of the important techniques used for reduction of energy consumption, energy losses, and peak demand. The proper load modelling is necessary in order to accurately schedule the volt/VAr control (VVC) devices. In the past, most of the studies have evaluated energy losses of the network by considering constant power type of loads. Some studies also have considered different types of loads such as constant power (), constant current (), and constant impedance (). However, there is no literature on the effect of load models on the scheduling of VVC devices. The purpose of this study is to show the impact of load models on various operating parameters in VVC. In this study, the impact of different load models on the scheduling of VVC devices is analysed. Time-series simulations are carried on the modified IEEE-123 node unbalanced radial distribution network, where industrial, commercial, and residential loads are connected at various locations. A comparative study is performed under VVO framework to analyse energy consumption, losses, and peak power demand. The important objective of this study is to find the best settings of VVC devices with various load models while minimising apparent energy losses of the network.

References

    1. 1)
      • 1. Bibliography on load models for power flow and dynamic performance simulation’, IEEE Trans. Power Syst., 1995, 10, (1), pp. 523538.
    2. 2)
      • 2. Rizy, D.T., Lawler, J.S., Patton, J.B., et al: ‘Measuring and analyzing the impact of voltage and capacitor control with high speed data acquisition [distribution system]’, IEEE Trans. Power Deliv., 1989, 4, (1), pp. 704714.
    3. 3)
      • 3. Singh, D., Singh, D., Verma, K.S.: ‘Multiobjective optimization for dg planning with load models’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 427436.
    4. 4)
      • 4. Qian, K., Zhou, C., Allan, M., et al: ‘Effect of load models on assessment of energy losses in distributed generation planning’, Int. J. Electr. Power Energy Syst., 2011, 33, (6), pp. 12431250.
    5. 5)
      • 5. Singh, D., Misra, R.K.: ‘Multi-objective feeder reconfiguration in different tariff structures’, IET Gener. Transm. Distrib., 2010, 4, (8), pp. 974988.
    6. 6)
      • 6. Hong, Y.Y., Luo, Y.F.: ‘Optimal VAR control considering wind farms using probabilistic load-flow and gray-based genetic algorithms’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 14411449.
    7. 7)
      • 7. De Souza, B.A., De Almeida, A.M.F.: ‘Multiobjective optimization and fuzzy logic applied to planning of the Volt/VAr problem in distributions systems’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 12741281.
    8. 8)
      • 8. Ulinuha, A., Masoum, M.A.S., Islam, S.: ‘Hybrid genetic-fuzzy algorithm for volt/VAr/total harmonic distortion control of distribution systems with high penetration of non-linear loads’, IET Gener. Transm. Distrib., 2011, 5, (4), p. 425.
    9. 9)
      • 9. Niknam, T., Zare, M., Aghaei, J.: ‘Scenario-based multiobjective volt/VAr control in distribution networks including renewable energy sources’, IEEE Trans. Power Deliv., 2012, 27, (4), pp. 20042019.
    10. 10)
      • 10. Franco, J.F., Rider, M.J., Lavorato, M., et al: ‘A mixed-integer LP model for the optimal allocation of voltage regulators and capacitors in radial distribution systems’, Int. J. Electr. Power Energy Syst., 2013, 48, (1), pp. 123130.
    11. 11)
      • 11. Mohapatra, A., Bijwe, P.R., Panigrahi, B.K.: ‘An efficient hybrid approach for volt/VAr control in distribution systems’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 17801788.
    12. 12)
      • 12. Jashfar, S., Esmaeili, S.: ‘Volt/VAr/THD control in distribution networks considering reactive power capability of solar energy conversion’, Int. J. Electr. Power Energy Syst., 2014, 60, pp. 221233.
    13. 13)
      • 13. Jashfar, S., Hosseini-Biyouki, M.M., Esmaeili, S.: ‘A stochastic programming to volt/VAr/total harmonic distortion control in distribution networks including wind turbines’, Electr. Power Compon. Syst., 2015, 43, (7), pp. 733746.
    14. 14)
      • 14. Zare, M., Niknam, T., Azizipanah-Abarghooee, R., et al: ‘Multi-objective probabilistic reactive power and voltage control with wind site correlations’, Energy, 2014, 66, pp. 810822.
    15. 15)
      • 15. Manbachi, M., Nasri, M., Shahabi, B., et al: ‘Real-time adaptive VVO/CVR topology using multi-agent system and IEC 61850-based communication protocol’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 587597.
    16. 16)
      • 16. Wang, Z., Wang, J., Chen, B., et al: ‘MPC-based voltage/Var optimization for distribution circuits with distributed generators and exponential load models’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 24122420.
    17. 17)
      • 17. Ahmadi, H., Marti, J.R., Dommel, H.W.: ‘A framework for volt–VAR optimization in distribution systems’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 14731483.
    18. 18)
      • 18. Mokgonyana, L., Zhang, J., Zhang, L., et al: ‘Coordinated two-stage volt/VAr management in distribution networks’, Electr. Power Syst. Res., 2016, 141, pp. 157164.
    19. 19)
      • 19. Jabr, R.A., Dzafic, I.: ‘Sensitivity-based discrete coordinate-descent for volt/VAr control in distribution networks’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 46704678.
    20. 20)
      • 20. Zhang, X., Flueck, A.J., Nguyen, C.P.: ‘Agent-based distributed volt/VAr control with distributed power flow solver in smart grid’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 600607.
    21. 21)
      • 21. Manbachi, M., Farhangi, H., Palizban, A., et al: ‘A novel volt–VAr optimization engine for smart distribution networks utilizing vehicle to grid dispatch’, Int. J. Electr. Power Energy Syst., 2016, 74, pp. 238251.
    22. 22)
      • 22. Manbachi, M., Farhangi, H., Palizban, A., et al: ‘Smart grid adaptive energy conservation and optimization engine utilizing particle swarm optimization and fuzzification’, Appl. Energy, 2016, 174, pp. 6979.
    23. 23)
      • 23. Manbachi, M., Sadu, A., Farhangi, H., et al: ‘Real-time co-simulation platform for smart grid volt–VAr optimization using IEC 61850’, IEEE Trans. Ind. Inf., 2016, 12, (4), pp. 13921402.
    24. 24)
      • 24. Manbachi, M., Sadu, A., Farhangi, H., et al: ‘Impact of EV penetration on volt–VAr optimization of distribution networks using real-time co-simulation monitoring platform’, Appl. Energy, 2016, 169, pp. 2839.
    25. 25)
      • 25. Anwar, A., Mahmood, A.N., Taheri, J., et al: ‘HPC-based intelligent volt/VAr control of unbalanced distribution smart grid in the presence of noise’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 14461459.
    26. 26)
      • 26. Sayadi, F., Esmaeili, S., Keynia, F.: ‘Two-layer volt/VAr/total harmonic distortion control in distribution network based on PVs output and load forecast errors’, IET Gener. Transm. Distrib., 2017, 11, (8), pp. 21302137.
    27. 27)
      • 27. Gutiérrez-Alcaraz, G., Tovar-Hernández, J.H.: ‘Two-stage heuristic methodology for optimal reconfiguration and volt/VAr control in the operation of electrical distribution systems’, IET Gener. Transm. Distrib., 2017, 11, (16), pp. 39463954.
    28. 28)
      • 28. Kersting, W.H.: ‘Distribution system modeling and analysis’ (CRC Press, Boca Raton, FL, 2002).
    29. 29)
      • 29. Padilha-Feltrin, A., Quijano-Rodezno, D.A., Sanches-Mantovani, J.R.: ‘Volt–VAr multiobjective optimization to peak-load relief and energy efficiency in distribution networks’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 618626.
    30. 30)
      • 30. American national standard for electric power systems and equipment – voltage ratings (60 Hz)’, National Electrical Manufacturers Association, ANSI C84.1-2016.
    31. 31)
      • 31. IEEE-123 bus test feeder data – PES test feeder’. Available at http://sites.ieee.org/pes-testfeeders/resources/, accessed on 18 February 2018.
    32. 32)
      • 32. Line and cable data – PES test feeder’. Available at http://sites.ieee.org/pes-testfeeders/resources, accessed on 18 February 2018.
    33. 33)
      • 33. Hsu, Y.Y., Lu, F.C.: ‘A combined artificial neural network-fuzzy dynamic programming approach to reactive power/voltage control in a distribution substation’, IEEE Trans. Power Syst., 1998, 13, (4), pp. 12651271.
    34. 34)
      • 34. OpenDSS – EPRI distribution system simulator’. Available at https://sourceforge.net/projects/electricdss/files/, accessed January 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5262
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5262
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address