http://iet.metastore.ingenta.com
1887

Fault detection and classification in transmission lines based on a PSD index

Fault detection and classification in transmission lines based on a PSD index

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study deals with the faults’ detection and classification in AC transmission lines based on power spectral density (PSD), introducing PSD in time and frequency for analysing transient information under faulted conditions. The discrete wavelet transform is used for scaling current signals in time–frequency at different decomposition levels by approximation and detail coefficients. Then, a wavelet-covariance matrix is shaped with the aim to obtain its PSD, being this the key to detect and classifying faults. Results show that the proposed method attains the detection in a short time and the classification is accomplished via the Hellinger distance, whose straightforward implementation is carried out in this study. The classification process is compared adopting different classifiers to cope with a set of signals in a time frame. Finally, the proposal is extensively assessed using real and simulated signals stemming from multiple fault cases of radial and interconnected power grids.

References

    1. 1)
      • 1. Dobakhshari, A.S.: ‘Noniterative parameter-free fault location on untransposed single-circuit transmission lines’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 16361644.
    2. 2)
      • 2. Giuseppe Di Santo, S., de Morais Pereira, C.E.: ‘Fault location method applied to transmission lines of general configuration’, Electr. Power Energy Syst., 2015, 69, pp. 287294.
    3. 3)
      • 3. Mahamedi, B., Zhu, J.G.: ‘Fault classification and faulted phase selection based on the symmetrical components of reactive power for single-circuit transmission lines’, IEEE Trans. Power Deliv., 2013, 28, (4), pp. 23262332.
    4. 4)
      • 4. Rahmati, A., Adhami, R.: ‘A fault detection and classification technique based on sequential components’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 42024209.
    5. 5)
      • 5. Noori, M.R., Shahrtash, S.M.: ‘Combined fault detector and the faulted phase selector for transmission lines based on adaptive cumulative sum method’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 17791787.
    6. 6)
      • 6. Krishnanand, K.R., Dash, P.K., Naeem, M.H.: ‘Detection, classification, and location of faults in power transmission lines’, Electr. Power Energy Syst., 2015, 67, pp. 7686.
    7. 7)
      • 7. Biswal, M.: ‘Faulty phase selection for a transmission line using an integrated moving sum approach’, IET Sci. Meas. Technol., 2016, 10, (7), pp. 761767.
    8. 8)
      • 8. de Souza Gomes, A., Costa, M.A., de Faria, T.G.A., et al: ‘Detection and classification of faults in power transmission lines using functional analysis and computational intelligence’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 14021413.
    9. 9)
      • 9. Malik, H., Sharma, R.: ‘Transmission line fault classification using modified fuzzy Q learning’, IET Gener. Transm. Distrib., 2017, 11, (16), pp. 40414050.
    10. 10)
      • 10. Hasheminejad, S., Seifossadat, S.G., Razaz, M., et al: ‘Traveling-wave-based protection of parallel transmission lines using Teager energy operator and fuzzy systems’, IET Gener. Transm. Distrib., 2016, 10, (4), pp. 10671074.
    11. 11)
      • 11. Yadav, A., Swetapadma, A.: ‘Enhancing the performance of transmission line directional relaying, fault classification and fault location schemes using fuzzy inference system’, IET Gener. Transm. Distrib., 2015, 9, (6), pp. 580591.
    12. 12)
      • 12. Upendar, J, Gupta, C.P., Singh, G.K., et al: ‘PSO and ANN-based fault classification for protective relaying’, IET Gener. Transm. Distrib., 2010, 4, (10), pp. 11971212.
    13. 13)
      • 13. Seyedtabaii, S.: ‘Improvement in the performance of neural network-based power transmission line fault classifiers’, IET Gener. Transm. Distrib., 2012, 6, (8), pp. 731737.
    14. 14)
      • 14. Fathabadi, H.: ‘Novel filter based ANN approach for short-circuit faults detection, classification and location in power transmission lines’, Electr. Power Energy Syst., 2016, 74, pp. 374383.
    15. 15)
      • 15. Yusuff, A.A., Jimoh, A.A., Munda, J.L.: ‘Determinant-based feature extraction for fault detection and classification for power transmission lines’, IET Gener. Transm. Distrib., 2011, 5, (12), pp. 12591267.
    16. 16)
      • 16. Parikh, U.B., Das, B., Maheshwari, R.P.: ‘Combined wavelet-SVM technique for fault zone detection in a series compensated transmission line’, IEEE Trans. Power Deliv., 2008, 23, (4), pp. 17891794.
    17. 17)
      • 17. Jafarian, P., Sanaye-Pasand, M.: ‘A traveling-wave-based protection technique using wavelet/PCA analysis’, IEEE Trans. Power Deliv., 2010, 25, (2), pp. 588599.
    18. 18)
      • 18. Liu, Z., Han, Z., Zhang, Y., et al: ‘Multiwavelet packet entropy and its application in transmission line fault recognition and classification’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (11), pp. 20432052.
    19. 19)
      • 19. Costa, F.B.: ‘Fault-induced transient detection based on real-time analysis of the wavelet coefficient energy’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 140153.
    20. 20)
      • 20. Upendar, J., Gupta, C.P., Singh, G.K.: ‘Statistical decision-tree based fault classification scheme for protection of power transmission lines’, Electr. Power Energy Syst., 2012, 36, (1), pp. 112.
    21. 21)
      • 21. Perez, F.E., Aguilar, R., Orduna, E., et al: ‘High-speed non-unit transmission line protection using single-phase measurements and an adaptive wavelet: zone detection and fault classification’, IET Gener. Transm. Distrib., 2012, 6, (7), pp. 593604.
    22. 22)
      • 22. Ananthan, S.N., Padmanabhan, R., Meyur, R., et al: ‘Real-time fault analysis of transmission lines using wavelet multi-resolution analysis based frequency-domain approach’, IET Sci. Meas. Technol., 2016, 10, (7), pp. 693703.
    23. 23)
      • 23. Rathore, B., Shaik, A.G.: ‘Wavelet-alienation based transmission line protection scheme’, IET Gener. Transm. Distrib., 2017, 11, (4), pp. 9951003.
    24. 24)
      • 24. IEC 60255-24: Measuring relays and protection equipment – Part 24: Common format for transient data exchange (COMTRADE) for power systems’, 2013.
    25. 25)
      • 25. Pourkamali-Anaraki, F.: ‘Estimation of the sample covariance matrix from compressive measurements’, IET Signal Process., 2016, 10, (9), pp. 10891095.
    26. 26)
      • 26. Hendriks, R.C., Gerkmann, T.: ‘Noise correlation matrix estimation for multi-microphone speech enhancement’, IEEE Trans. Audio Speech Lang. Process., 2012, 20, (1), pp. 223233.
    27. 27)
      • 27. Guillen, D., Idarraga-Ospina, G., Mombello, E.: ‘Partial discharge location in power transformer windings using the wavelet Laplace function’, Electr. Power Syst. Res., 2014, 111, pp. 7177.
    28. 28)
      • 28. Pedregosa, F., Varoquaux, G., et al: ‘Scikit-learn: machine learning in Python’, J. Mach. Learn. Res., 2011, 12, pp. 28252830.
    29. 29)
      • 29. Pradhan, A.: ‘Support vector machine – a survey’, Int. J. Emerging Technol. Adv. Eng., 2012, 2, (8), pp. 8285.
    30. 30)
      • 30. Annakkage, U.D., McLaren, P.G., Dirks, E., et al: ‘A current transformer model based on the Jiles–Atherton theory of ferromagnetic hysteresis’, IEEE Trans. Power Deliv., 2000, 15, (1), pp. 5761.
    31. 31)
      • 31. Paternina, M.R.A., Zamora-Mendez, A., Ortiz-Bejar, J., et al: ‘Identification of coherent trajectories by modal characteristics and hierarchical agglomerative clustering’, Electr. Power Syst. Res., 2018, 158, pp. 170183.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5062
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5062
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address