http://iet.metastore.ingenta.com
1887

Probabilistic–possibilistic model for a parking lot in the smart distribution network expansion planning

Probabilistic–possibilistic model for a parking lot in the smart distribution network expansion planning

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Conventional distribution network departs to the smart grid. The parking lot will have an important role in the smart grid as a distributed generation. Due to the output power of parking lots is uncertain, More accurate modeling of parking lot output power is necessary for the future of distribution network studies such as Distribution Network Expansion Planning (DNEP). In this paper, a systematic method based on the Z-number concept is utilized to represent the uncertainty of Vehicle to Grid's (V2G's) presence. In order to investigate the impact of V2Gs uncertainty on the DNEP, we proposed a Probabilistic–Possibilistic DNEP in the presence of V2Gs referred to as P-PDNEPV2G. If the V2Gs historical data is incomplete, the proposed structure can significantly consider the effects of V2G on the DNEP. In P-PDNEPV2G, parking lots output power is described as a probabilistic–possibilistic variable by Z-number method. The optimization of P-PDNEPV2G is executed by the Non-Dominated Sorting Genetic Algorithm (NSGA-II). A 24-bus test system and the real 20 kV distribution network of Ghale-Ganj city of Kerman province in Iran are used to demonstrate the effectiveness of the proposed methodology. Eventually, several analyses are conducted to investigate the impact of probabilistic–possibilistic V2G model on the DNEP problem.

References

    1. 1)
      • A. Bagheri , H. Monsef , H. Lesani .
        1. Bagheri, A., Monsef, H., Lesani, H.: ‘Integrated distribution network expansion planning incorporating distributed generation considering uncertainties, reliability, and operational conditions’, Int. J. Electr. Power Energy Syst., 2015, 73, pp. 5670.
        . Int. J. Electr. Power Energy Syst. , 56 - 70
    2. 2)
      • R.A. Jabr .
        2. Jabr, R.A.: ‘Polyhedral formulations and loop elimination constraints for distribution network expansion planning’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 18881897.
        . IEEE Trans. Power Syst. , 2 , 1888 - 1897
    3. 3)
      • N.G. Boulaxis , M.P. Papadopoulos .
        3. Boulaxis, N.G., Papadopoulos, M.P.: ‘Optimal feeder routing in distribution system planning using dynamic programming technique and GIS facilities’, IEEE Power Eng. Rev., 2001, 21, (11), pp. 6363.
        . IEEE Power Eng. Rev. , 11 , 63 - 63
    4. 4)
      • N. Jahanyari , A. Amini , N. Taghizadeghan .
        4. Jahanyari, N., Amini, A., Taghizadeghan, N., et al: ‘Smart distribution grid multistage expansion planning under load forecasting uncertainty’, IET Gener. Transm. Distrib., 2016, 10, (5), pp. 11361144.
        . IET Gener. Transm. Distrib. , 5 , 1136 - 1144
    5. 5)
      • M. El-kady .
        5. El-kady, M.: ‘Computer-aided planning of distribution substation and primary feeders’, IEEE Trans. Power Appar. Syst., 1984, PAS-103, (6), pp. 11831189.
        . IEEE Trans. Power Appar. Syst. , 6 , 1183 - 1189
    6. 6)
      • R.H. Fletcher , K. Strunz .
        6. Fletcher, R.H., Strunz, K.: ‘Optimal distribution system horizon planning–part I: formulation’, IEEE Trans. Power Syst., 2007, 22, (2), pp. 791799.
        . IEEE Trans. Power Syst. , 2 , 791 - 799
    7. 7)
      • M.S. Nazar , M.R. Haghifam .
        7. Nazar, M.S., Haghifam, M.R.: ‘Multiobjective electric distribution system expansion planning using hybrid energy hub concept’, Electr. Power Syst. Res., 2009, 79, (6), pp. 899911.
        . Electr. Power Syst. Res. , 6 , 899 - 911
    8. 8)
      • A.M. El-Zonkoly .
        8. El-Zonkoly, A.M.: ‘Multistage expansion planning for distribution networks including unit commitment’, IET Gener. Transm. Distrib., 2013, 7, (7), pp. 766778.
        . IET Gener. Transm. Distrib. , 7 , 766 - 778
    9. 9)
      • A.M. Cossi , L.G.W. da Silva , R.A.R. Lázaro .
        9. Cossi, A.M., da Silva, L.G.W., Lázaro, R.A.R., et al: ‘Primary power distribution systems planning taking into account reliability, operation and expansion costs’, IET Gener. Transm. Distrib., 2012, 6, (3), p. 274.
        . IET Gener. Transm. Distrib. , 3 , 274
    10. 10)
      • J. Wu , J. Ekanayake , N. Jenkins . (2017)
        10. Wu, J., Ekanayake, J., Jenkins, N.: ‘Smart electricity distribution networks’ (CRC Press, Boca Raton, FL, USA, 2017).
        .
    11. 11)
      • B.M. Buchholz , Z. Styczynski . (2016)
        11. Buchholz, B.M., Styczynski, Z.: ‘Smart grids – fundamentals and technologies in electricity networks’ (Springer-Verlag, Berlin, Heidelberg, 2016).
        .
    12. 12)
      • W. Ouyang , H. Cheng , X. Zhang .
        12. Ouyang, W., Cheng, H., Zhang, X., et al: ‘Distribution network planning method considering distributed generation for peak cutting’, Energy Convers. Manage., 2010, 51, (12), pp. 23942401.
        . Energy Convers. Manage. , 12 , 2394 - 2401
    13. 13)
      • T. Gözel , M.H. Hocaoglu .
        13. Gözel, T., Hocaoglu, M.H.: ‘An analytical method for the sizing and siting of distributed generators in radial systems’, Electr. Power Syst. Res., 2009, 79, (6), pp. 912918.
        . Electr. Power Syst. Res. , 6 , 912 - 918
    14. 14)
      • M. Ahmadigorji , N. Amjady .
        14. Ahmadigorji, M., Amjady, N.: ‘A multiyear DG-incorporated framework for expansion planning of distribution networks using binary chaotic shark smell optimization algorithm’, Energy, 2016, 102, pp. 199215.
        . Energy , 199 - 215
    15. 15)
      • S. Porkar , P. Poure , A. Abbaspour-Tehrani-fard .
        15. Porkar, S., Poure, P., Abbaspour-Tehrani-fard, A., et al: ‘A novel optimal distribution system planning framework implementing distributed generation in a deregulated electricity market’, Electr. Power Syst. Res., 2010, 80, (7), pp. 828837.
        . Electr. Power Syst. Res. , 7 , 828 - 837
    16. 16)
      • G. Munoz-Delgado , J. Contreras , J.M. Arroyo .
        16. Munoz-Delgado, G., Contreras, J., Arroyo, J.M.: ‘Joint expansion planning of distributed generation and distribution networks’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 25792590.
        . IEEE Trans. Power Syst. , 5 , 2579 - 2590
    17. 17)
      • M. Sedghi , M. Aliakbar-Golkar , M.-R. Haghifam .
        17. Sedghi, M., Aliakbar-Golkar, M., Haghifam, M.-R.: ‘Distribution network expansion considering distributed generation and storage units using modified PSO algorithm’, Int. J. Electr. Power Energy Syst., 2013, 52, pp. 221230.
        . Int. J. Electr. Power Energy Syst. , 221 - 230
    18. 18)
      • A.M. Hadi , M.H. Moradi , M.H. Amini .
        18. Hadi, A.M., Moradi, M.H., Amini, M.H.: ‘Simultaneous allocation of electric vehicles’, parking lots and distributed renewable resources in smart power distribution networks’, Sustain. Cities Soc., 2017, 28, pp. 332342.
        . Sustain. Cities Soc. , 332 - 342
    19. 19)
      • M.R. Mozafar , M.H. Moradi , A.M. Hadi .
        19. Mozafar, M.R., Moradi, M.H., Hadi, A.M.: ‘A simultaneous approach for optimal allocation of renewable energy sources and electric vehicle charging stations in smart grids based on improved GA-PSO algorithm’, Sustain. Cities Soc., 2017, 32, pp. 627637.
        . Sustain. Cities Soc. , 627 - 637
    20. 20)
      • C. Sandels , U. Franke , N. Ingvar .
        20. Sandels, C., Franke, U., Ingvar, N., et al: ‘Vehicle to grid — Monte Carlo simulations for optimal aggregator strategies’. IEEE 2010 Int. Conf. on Power System Technology, Hangzhou, China, October 2010, pp. 18.
        . IEEE 2010 Int. Conf. on Power System Technology , 1 - 8
    21. 21)
      • W. Liu , M. Zhang , B. Zeng .
        21. Liu, W., Zhang, M., Zeng, B., et al: ‘Analyzing the impacts of electric vehicle charging on distribution system reliability’. IEEE PES Innovative Smart Grid Technologies, Tianjin, China, May 2012, pp. 16.
        . IEEE PES Innovative Smart Grid Technologies , 1 - 6
    22. 22)
      • M.D. Galus , R.A. Waraich , G. Andersson . (2011)
        22. Galus, M.D., Waraich, R.A., Andersson, G.: ‘Predictive, distributed, hierarchical charging control of PHEVs in the distribution system of a large urban area incorporating a multi agent transportation simulation’ (ETH, Eidgenössische Technische Hochschule, IVT, Institut für Verkehrsplanung und Transport Systeme, Zürich, 2011).
        .
    23. 23)
      • S. Naghdizadegan Jahromi , A. Askarzadeh , A. Abdollahi .
        23. Naghdizadegan Jahromi, S., Askarzadeh, A., Abdollahi, A.: ‘Modelling probabilistic transmission expansion planning in the presence of plug-in electric vehicles uncertainty by multi-state Markov model’, IET Gener. Transm. Distrib., 2017, 11, (7), pp. 17161725.
        . IET Gener. Transm. Distrib. , 7 , 1716 - 1725
    24. 24)
      • S. Tabatabaee , S.S. Mortazavi , T. Niknam .
        24. Tabatabaee, S., Mortazavi, S.S., Niknam, T.: ‘Stochastic scheduling of local distribution systems considering high penetration of plug-in electric vehicles and renewable energy sources’, Energy, 2017, 121, pp. 480490.
        . Energy , 480 - 490
    25. 25)
      • S.M. Moghaddas Tafreshi , H. Ranjbarzadeh , M. Jafari .
        25. Moghaddas Tafreshi, S.M., Ranjbarzadeh, H., Jafari, M., et al: ‘A probabilistic unit commitment model for optimal operation of plug-in electric vehicles in microgrid’, Renew. Sustain. Energy Rev., 2016, 66, pp. 934947.
        . Renew. Sustain. Energy Rev. , 934 - 947
    26. 26)
      • S. Wencong , J. Wang , K. Zhang .
        26. Wencong, S., Wang, J., Zhang, K.: ‘Model predictive control-based power dispatch for distribution system considering plug-in electric vehicle uncertainty’, Electr. Power Syst. Res., 2014, 106, pp. 2935.
        . Electr. Power Syst. Res. , 29 - 35
    27. 27)
      • A. Soroudi , T. Amraee .
        27. Soroudi, A., Amraee, T.: ‘Decision making under uncertainty in energy systems: state of the art’, Renew. Sustain. Energy Rev., 2013, 28, pp. 376384.
        . Renew. Sustain. Energy Rev. , 376 - 384
    28. 28)
      • L.A. Zadeh .
        28. Zadeh, L.A.: ‘A note on Z-numbers’, Inf. Sci., 2011, 181, (14), pp. 29232932.
        . Inf. Sci. , 14 , 2923 - 2932
    29. 29)
      • B. Kang , W. Daijun , L Ya .
        29. Kang, B., Daijun, W., Ya, L, et al: ‘A method of converting Z-number to classical fuzzy number’, J. Inf. Comput. Sci., 2012, 9, (3), pp. 703709.
        . J. Inf. Comput. Sci. , 3 , 703 - 709
    30. 30)
      • S. Han , K. Sezaki .
        30. Han, S., Sezaki, K.: ‘Estimation of achievable power capacity from plug-in electric vehicles for V2G frequency regulation: case studies for market participation’, IEEE Trans. Smart Grid, 2011, 2, (4), pp. 632641.
        . IEEE Trans. Smart Grid , 4 , 632 - 641
    31. 31)
      • R. Coppi , P. D'Urso , P. Giordani .
        31. Coppi, R., D'Urso, P., Giordani, P., et al: ‘Least squares estimation of a linear regression model with LR fuzzy response’, Comput. Stat. Data Anal., 2006, 51, (1), pp. 267286.
        . Comput. Stat. Data Anal. , 1 , 267 - 286
    32. 32)
      • H. Zhang , D. Liu . (2006)
        32. Zhang, H., Liu, D.: ‘Fuzzy modeling and fuzzy control’ (Birkhäuser, Boston, MA, USA, 2006).
        .
    33. 33)
      • K. Deb , A. Pratap , S. Agarwal .
        33. Deb, K., Pratap, A., Agarwal, S., et al: ‘A fast and elitist multiobjective genetic algorithm: NSGA-II’, IEEE Trans. Evol. Comput., 2002, 6, (2), pp. 182197.
        . IEEE Trans. Evol. Comput. , 2 , 182 - 197
    34. 34)
      • M. Lavorato , M.J. Rider , A. V Garcia .
        34. Lavorato, M., Rider, M.J., Garcia, A. V, et al: ‘A constructive heuristic algorithm for distribution system planning’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 17341742.
        . IEEE Trans. Power Syst. , 3 , 1734 - 1742
    35. 35)
      • K. Deb . (2001)
        35. Deb, K.: ‘Multi-objective optimization using evolutionary algorithms’ (John Wiley & Sons, Hoboken, NJ, USA, 2001).
        .
    36. 36)
      • S. Heidari , M. Fotuhi-Firuzabad , S. Kazemi .
        36. Heidari, S., Fotuhi-Firuzabad, M., Kazemi, S.: ‘Power distribution network expansion planning considering distribution automation’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 12611269.
        . IEEE Trans. Power Syst. , 3 , 1261 - 1269
    37. 37)
      • (2011)
        37. U.S. Department of Transportation: ‘Federal highway administration’ (2009 National Household Travel Survey, Washington, D.C., USA, 2011), Available at http://nhts.ornl.gov.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.0366
Loading

Related content

content/journals/10.1049/iet-gtd.2018.0366
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address