Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Novel application of integral-tilt-derivative controller for performance evaluation of load frequency control of interconnected power system

The primary aim of load frequency control (LFC) is to provide a good quality of electrical power to the consumers within a prescribed limit of frequency and scheduled tie-line power deviation. To achieve this objective, LFC needs highly efficient and intelligent control mechanism. Subsequently, here, a novel integral-tilt-derivative (I-TD) controller, fine-tuned by a powerful heuristic optimisation technique [called as water cycle algorithm (WCA)], is proposed for the LFC study of a two-area interconnected thermal-hydro-nuclear generating units. The studied system involves non-linearities like generation rate constraints, governor dead band, and boiler dynamics. To explore the effectiveness of the proposed controller, dynamic responses of the studied system, as obtained using I-TD controller, are compared to those yielded by other controllers such as tilt-integral-derivative and conventional proportional–integral–derivative controllers. The investigation demonstrates that the proposed I-TD controller delivers better performance in comparison to the other counterparts. Furthermore, sensitivity analysis is carried out to show robustness of the WCA tuned proposed I-TD controller by varying system parameters and loading condition. It is perceived that the proposed I-TD controller is robust and offers better transient response under varying operating conditions.

References

    1. 1)
      • 18. Lurie, B.J.: ‘Three-parameter tunable tilt-integral-derivative (TID) controller’. US Patent, US5371670, 1994.
    2. 2)
      • 2. Shayeghi, H., Shayanfar, H.A., Jalili, A.: ‘Load frequency control strategies: a state-of-the-art survey for the researcher’, Energy Convers. Manage., 2009, 50, (2), pp. 344353.
    3. 3)
      • 30. Demiroren, A., Yesil, E.: ‘Automatic generation control with fuzzy logic controllers in the power system including SMES units’, Electr. Power Energy Syst., 2004, 26, (1), pp. 291305.
    4. 4)
      • 26. Tripathy, S.C., Balasubramanian, R., Nair, P.: ‘Effect of superconducting magnetic energy storage on automatic generation control considering governor deadband and boiler dynamics’, IEEE Trans. Power Syst., 1992, 7, (3), pp. 12661273.
    5. 5)
      • 28. Gozde, H., Taplamacioglu, M.C.: ‘Automatic generation control application with craziness based particle swarm optimization in a thermal power system’, Int. J. Electr. Power Energy Syst., 2011, 33, (1), pp. 816.
    6. 6)
      • 11. Yeşil, E., Güzelkaya, M., Eksin, I.: ‘Self-tuning fuzzy PID type load and frequency controller’, Energy Convers. Manage., 2004, 45, (3), pp. 377390.
    7. 7)
      • 16. Singh, S.P., Prakash, T., Singh, V.P., et al: ‘Analytic hierarchy process based automatic generation control of multi-area interconnected power system using Jaya algorithm’, Eng. Appl. Artif. Intell., 2017, 60, pp. 3544.
    8. 8)
      • 22. Sarvi, M., Avanaki, I.N.: ‘An optimized fuzzy logic controller by water cycle algorithm for power management of stand-alone hybrid green power generation’, Energy Convers. Manage., 2015, 106, (1), pp. 118126.
    9. 9)
      • 5. Chuang, N.: ‘Robust H load-frequency control in interconnected power systems’, IET Control Theory Appl., 2016, 10, (1), pp. 6775.
    10. 10)
      • 13. Guha, D., Roy, P.K., Banerjee, S.: ‘Application of backtracking search algorithm in load frequency control of multi-area interconnected power system’, Ain Shams Eng. J., 2018, 9, (2), pp. 257276.
    11. 11)
      • 12. Sahu, B.K., Pati, T.K., Nayak, J.R., et al: ‘A novel hybrid LUS–TLBO optimized fuzzy-PID controller for load frequency control of multi-source power system’, Int. J. Electr. Power Energy Syst., 2016, 74, pp. 5869.
    12. 12)
      • 4. Rahmani, M., Sadati, N.: ‘Two-level optimal load-frequency control for multi-area power systems’, Int. J. Electr. Power Energy Syst., 2013, 53, (1), pp. 540547.
    13. 13)
      • 9. Haroun, A.G., Li, Y.Y: ‘A novel optimized hybrid fuzzy logic intelligent PID controller for an interconnected multi-area power system with physical constraints and boiler dynamics’, ISA Trans.., 2017, 71, pp. 364379.
    14. 14)
      • 23. Ghaffarzadeh, N.: ‘Water cycle algorithm based power system stabilizer robust design for power systems’, J. Electr. Eng., 2015, 66, (2), pp. 9196.
    15. 15)
      • 34. Valério, D., Da Costa, J.S.: ‘NINTEGER: a non-integer control toolbox for MATLAB’. Proc. of the Fractional Differentiation and Its Applications, Bordeaux, 2004.
    16. 16)
      • 1. Elgerd, O.I.: ‘Electric energy systems theory – an introduction’ (Tata McGraw Hill, India, 2000, 2nd edn.).
    17. 17)
      • 33. Sadollah, A., Eskandar, H., Bahreininejad, A., et al: ‘Water cycle, mine blast and improved mine blast algorithms for discrete sizing optimization of truss structures’, Comput. Struct., 2015, 149, (1), pp. 116.
    18. 18)
      • 21. Eskandar, H., Sadollah, A., Bahreininejad, A., et al: ‘Water cycle algorithm – a novel metaheuristic optimization method for solving constrained engineering optimization problems’, Comput. Struct., 2012, 110, (1), pp. 151166.
    19. 19)
      • 24. El-Hameed, M.A., El-Fergany, A.A.: ‘Water cycle algorithm-based load frequency controller for interconnected power systems comprising non-linearity’, IET Gener. Transm. Distrib., 2016, 10, (15), pp. 39503961.
    20. 20)
      • 32. Sadollah, A., Eskandar, H., Lee, H.M., et al: ‘Water cycle algorithm: a detailed standard code’, SoftwareX, 2016, 5, (1), pp. 3743.
    21. 21)
      • 17. Xue, D., Chen, Y.: ‘A comparative introduction of four fractional order controllers’. Proc. of the 4th IEEE World Congress on Intelligent Control and Automation, Shanghai, China, November 2002.
    22. 22)
      • 8. Morsali, J., Zare, K., Hagh, M.T.: ‘Comparative performance evaluation of fractional order controllers in LFC of two-area diverse-unit power system with considering GDB and GRC effects’, J. Electr. Syst. Info. Tech., 2017, doi:10.1016/J.JESIT.2017.05.002.
    23. 23)
      • 19. Sahu, R.K., Panda, S., Biswal, A., et al: ‘Design and analysis of tilt integral derivative controller with filter for load frequency control of multi-area interconnected power systems’, ISA Trans.., 2016, 61, pp. 251264.
    24. 24)
      • 31. Rajinikanth, V., Latha, K.: ‘I-PD controller tuning for unstable system using bacterial foraging algorithm: a study based on various error criterion’, Appl. Comput. Intell. Soft Comput., 2012, 2012, pp. 110.
    25. 25)
      • 6. Mu, C., Tang, Y., He, H.: ‘Improved sliding mode design for load frequency control of power system integrated an adaptive learning strategy’, IEEE Trans. Ind. Electron., 2017, 64, (8), pp. 67426751.
    26. 26)
      • 20. Sain, D., Swain, S.K., Mishra, S.K.: ‘TID and I-TD controller design for magnetic levitation system using genetic algorithm’, Perspect. Sci., 2016, 8, pp. 370373.
    27. 27)
      • 14. Shiva, C.K., Mukherjee, V.: ‘Automatic generation control of interconnected power system for robust decentralized random load disturbances using a novel quasi-oppositional harmony search algorithm’, Int. J. Electr. Power Energy Syst., 2015, 73, pp. 9911001.
    28. 28)
      • 3. Saikia, L.C., Nanda, J., Mishra, S.: ‘Performance comparison of several classical controllers in AGC for multi-area interconnected thermal system’, Int. J. Electr. Power Energy Syst., 2011, 33, (3), pp. 394401.
    29. 29)
      • 29. Flynn, M.E., O'Malley, M.J.: ‘A drum boiler model for long term power system dynamic simulation’, IEEE Trans. Power Syst., 1999, 14, (1), pp. 209217.
    30. 30)
      • 27. Sahu, R.K., Gorripotu, T.S., Panda, S.: ‘Automatic generation control of multi-area power systems with diverse energy sources using teaching learning based optimization algorithm’, Eng. Sci. Tech. Int. J., 2016, 19, (1), pp. 113134.
    31. 31)
      • 25. Mohanty, B.: ‘TLBO optimized sliding mode controller for multi-area multi-source nonlinear interconnected AGC system’, Int. J. Electr. Power Energy Syst., 2015, 73, pp. 872881.
    32. 32)
      • 10. Mosaad, M.I., Salem, F.: ‘LFC based adaptive PID controller using ANN and ANFIS techniques’, J. Electr. Syst. Inf. Tech., 2014, 1, (3), pp. 212222.
    33. 33)
      • 15. Guha, D., Roy, P., Banerjee, S.: ‘Quasi-oppositional symbiotic organism search algorithm applied to load frequency control’, Swarm Evol. Comput., 2017, 33, pp. 4667.
    34. 34)
      • 7. Khooban, M.-H., Niknam, T., Shasadeghi, M., et al: ‘Load frequency control in microgrids based on a stochastic non-integer controller’, IEEE Trans. Sustain. Energy, 2018, 9, (2), pp. 853861.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.0345
Loading

Related content

content/journals/10.1049/iet-gtd.2018.0345
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address