http://iet.metastore.ingenta.com
1887

Novel application of integral-tilt-derivative controller for performance evaluation of load frequency control of interconnected power system

Novel application of integral-tilt-derivative controller for performance evaluation of load frequency control of interconnected power system

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The primary aim of load frequency control (LFC) is to provide a good quality of electrical power to the consumers within a prescribed limit of frequency and scheduled tie-line power deviation. To achieve this objective, LFC needs highly efficient and intelligent control mechanism. Subsequently, here, a novel integral-tilt-derivative (I-TD) controller, fine-tuned by a powerful heuristic optimisation technique [called as water cycle algorithm (WCA)], is proposed for the LFC study of a two-area interconnected thermal-hydro-nuclear generating units. The studied system involves non-linearities like generation rate constraints, governor dead band, and boiler dynamics. To explore the effectiveness of the proposed controller, dynamic responses of the studied system, as obtained using I-TD controller, are compared to those yielded by other controllers such as tilt-integral-derivative and conventional proportional–integral–derivative controllers. The investigation demonstrates that the proposed I-TD controller delivers better performance in comparison to the other counterparts. Furthermore, sensitivity analysis is carried out to show robustness of the WCA tuned proposed I-TD controller by varying system parameters and loading condition. It is perceived that the proposed I-TD controller is robust and offers better transient response under varying operating conditions.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.0345
Loading

Related content

content/journals/10.1049/iet-gtd.2018.0345
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address