http://iet.metastore.ingenta.com
1887

Fast distribution network reconfiguration with graph theory

Fast distribution network reconfiguration with graph theory

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Owing to mixed-integer and non-linear properties, the distribution network reconfiguration (DNRC) problem has been widely addressed with meta-heuristic algorithms. To accelerate the solution process, two essential components of meta-heuristic algorithms are investigated in this study: solution representation and fitness evaluation. Instead of the popular binary and integer numbers, decimal encoding is employed. Decoding is based on the proposed probability-based loop destruction strategy. The fitness evaluation is based on the power flow calculation of radial network. Different from backward/forward sweep method, the advantageous direct solution technique is utilised, where the matrix generation process has been accelerated. Both improvements are based on the graph theory and fully explained with illustrative examples. Case studies are implemented on five benchmark systems. The superiority of the proposed methods over their advanced counterparts has been established with intensive comparisons. Finally, these methods are integrated into a standard particle swarm optimisation framework for the solution of DNRC. Results indicate that the proposals significantly improve the solution efficiency without the loss of quality.

References

    1. 1)
      • 1. Zhu, J.: ‘Optimisation of power system operation’ (John Wiley & Sons, NJ, 2015, 2nd edn.).
    2. 2)
      • 2. Lopez, J.C., Lavorato, M., Franco, J.F., et al: ‘Robust optimisation applied to the reconfiguration of distribution systems with reliability constraints’, IET Gener. Transm. Distrib., 2016, 10, (4), pp. 917927.
    3. 3)
      • 3. Arun, M., Aravindhababu, P.: ‘A new reconfiguration scheme for voltage stability enhancement of radial distribution systems’, Energy Convers. Manage., 2009, 50, (9), pp. 21482151.
    4. 4)
      • 4. Roberge, V., Tarbouchi, M., Okou, F.A.: ‘Distribution system optimisation on graphics processing unit’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 16891699.
    5. 5)
      • 5. Lee, C., Liu, C., Mehrotra, S., et al: ‘Robust distribution network reconfiguration’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 836842.
    6. 6)
      • 6. Ahmadi, H., Marti, J.R.: ‘Linear current flow equations with application to distribution systems reconfiguration,IEEE Trans. Power Syst., 2015, 30, (4), pp. 20732080.
    7. 7)
      • 7. Borghetti, A.: ‘A mixed-integer linear programming approach for the computation of the minimum-losses radial configuration of electrical distribution networks,IEEE Trans. Power Syst., 2012, 27, (3), pp. 12641273.
    8. 8)
      • 8. Franco, J.F., Rider, M.J., Lavorato, M., et al: ‘A mixed-integer LP model for the reconfiguration of radial electric distribution systems considering distributed generation’, Electr. Power Syst. Res., 2013, 97, pp. 5160.
    9. 9)
      • 9. Ahmadi, H., Marti, J.R.: ‘Distribution system optimisation based on a linear power-flow formulation’, IEEE Trans. Power Deliv., 2015, 30, (1), pp. 2533.
    10. 10)
      • 10. Jabr, R.A., Singh, R., Pal, B.C.: ‘Minimum loss network reconfiguration using mixed-integer convex programming’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 11061115.
    11. 11)
      • 11. Taylor, J.A., Hover, F.S.: ‘Convex models of distribution system reconfiguration’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 14071413.
    12. 12)
      • 12. Gupta, N., Swarnkar, A., Niazi, K.R.: ‘A modified branch-exchange heuristic algorithm for large-scale distribution networks reconfiguration’. Proc. IEEE Power Energy Society General Meeting, San Diego, CA, USA, July 2012, pp. 17.
    13. 13)
      • 13. Peng, Q., Low, S.H.: ‘Optimal branch exchange for feeder reconfiguration in distribution networks’. Proc. 52nd IEEE Conf. Decision Control, Florence, Italy, December 2013, pp. 29602965.
    14. 14)
      • 14. Miguez, E., Cidras, J., Diaz-Dorado, E., et al: ‘An improved branch-exchange algorithm for large-scale distribution network planning’, IEEE Trans. Power Syst., 2002, 17, (4), pp. 931936.
    15. 15)
      • 15. Shirmohammadi, D., Hong, H.W.: ‘Reconfiguration of electric distribution networks for resistive line losses reduction’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 14921498.
    16. 16)
      • 16. Fan, J.-Y., Zhang, L., McDonald, J.D.: ‘Distribution network reconfiguration: single loop optimisation’, IEEE Trans. Power Syst., 1996, 11, (3), pp. 16431647.
    17. 17)
      • 17. Ding, F., Loparo, K.A.: ‘A simple heuristic method for smart distribution system reconfiguration’. Proc. IEEE Energytech, Cleveland, OH, USA, May 2012, pp. 16.
    18. 18)
      • 18. Enacheanu, B., Raison, B., Caire, R., et al: ‘Radial network reconfiguration using genetic algorithm based on the matroid theory’, IEEE Trans. Power Syst., 2008, 23, (1), pp. 186195.
    19. 19)
      • 19. Chang, G.W., Chu, S.Y., Wang, H.L.: ‘An improved backward/forward sweep load flow algorithm for radial distribution systems’, IEEE Trans. Power Syst., 2007, 22, (2), pp. 882884.
    20. 20)
      • 20. Harris, J.M., Hirst, J.L., Mossinghoff, M.J.: ‘Combinatorics and graph theory’, (Springer, New York, 2008).
    21. 21)
      • 21. Ju, Y., Wu, W., Zhang, B., et al: ‘Loop-analysis-based continuation power flow algorithm for distribution networks’, IET Gener. Transm. Distrib., 2014, 8, (7), pp. 12841292.
    22. 22)
      • 22. Zimmerman, R.D., Chiang, H.-D.: ‘Fast decoupled power flow for unbalanced radial distribution systems’, IEEE Trans. Power Syst., 1995, 10, (4), pp. 20452052.
    23. 23)
      • 23. Lin, W.-M., Teng, J.-H.: ‘Three-phase distribution network fast-decoupled power flow solutions’, Int. J. Electr. Power Energy Syst., 2000, 22, (5), pp. 375380.
    24. 24)
      • 24. Aravindhababu, P., Ashok Kumar, R.: ‘A fast decoupled power flow for distribution systems’, Electr. Power Compon. Syst., 2008, 36, (9), pp. 932940.
    25. 25)
      • 25. Irving, M.R., Sterling, M.J.H.: ‘Efficient Newton–Raphson algorithm for load-flow calculation in transmission and distribution networks’, IEE Proc., – Gener. Transm. Distrib., 1987, 134, (5), pp. 325330.
    26. 26)
      • 26. Garcia, P.A.N., Pereira, J.L.R., Carneiro, S., et al: ‘Three-phase power flow calculations using the current injection method’, IEEE Trans. Power Syst., 2000, 15, (2), pp. 508514.
    27. 27)
      • 27. Yang, H., Wen, F., Wang, L.: ‘Newton–Raphson on power flow algorithm and Broyden method in the distribution system’. Proc. IEEE Second Int. Power Energy Conf., Johor Bahru, Malaysia, December 2008, pp. 16131618.
    28. 28)
      • 28. Shirmohammadi, D., Hong, H.W., Semlyen, A., et al: ‘A compensation-based power flow method for weakly meshed distribution and transmission networks’, IEEE Trans. Power Syst., 1988, 3, (2), pp. 753762.
    29. 29)
      • 29. Alinjak, T., Pavic, I., Stojkov, M.: ‘Improvement of backward/forward sweep power flow method by using modified breadth-first search strategy’, IET Gener. Transm. Distrib., 2017, 11, (1), pp. 102109.
    30. 30)
      • 30. Saxena, K., Abhyankar, A.R.: ‘Agent-based decentralised load flow computation for smart management of distribution system’, IET Gener. Transm. Distrib., 2017, 11, (3), pp. 605614.
    31. 31)
      • 31. Eltantawy, A.B., Salama, M.M.A.: ‘A novel zooming algorithm for distribution load flow analysis for smart grid’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 17041711.
    32. 32)
      • 32. Teng, J.: ‘A direct approach for distribution system load flow solutions’, IEEE Trans. Power Deliv., 2003, 18, (3), pp. 882887.
    33. 33)
      • 33. Alsaadi, A., Gholami, B.: ‘An effective approach for distribution system power flow solution’, Int. J. Electr. Comput. Energetic Electron. Commun. Eng., 2009, 3, (1), pp. 15.
    34. 34)
      • 34. Mathworks: ‘Global optimisation toolbox’. Available at https://www.mathworks.com/help/gads/index.html, accessed 22 July 2017.
    35. 35)
      • 35. Fredman, M.L., Tarjan, R.E.: ‘Fibonacci heaps and their uses in improved network optimization algorithms’. Proc. 25th Annual Symp. Foundations Computer Science, Singer Island, FL, USA, October 1984, pp. 338346.
    36. 36)
      • 36. Kruskal, J.B.: ‘On the shortest spanning subtree of a graph and the traveling salesman problem’, Proc. Am. Math. Soc., 1956, 7, pp. 4850.
    37. 37)
      • 37. Roberge, V.: ‘Distribution feeder reconfiguration test cases’. Available at http://roberge.segfaults.net/joomla/index.php/dfr, accessed 13 August 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.0228
Loading

Related content

content/journals/10.1049/iet-gtd.2018.0228
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address