Day-ahead demand side management using symbiotic organisms search algorithm

Day-ahead demand side management using symbiotic organisms search algorithm

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

According to the present scenario, as demand for electricity has increased both in terms of base load energy and peak availability, it is vital to emphasise on the concept of demand side management (DSM). DSM assures efficient utilisation of facilities by managing the energy resources of the customers and optimally modifying their energy demand profiles. It is extremely useful for the power industry to integrate the smart grids with a DSM framework for achieving a sustainable energy goal. This study focuses on modelling of DSM using a day-ahead load shifting approach as a minimisation problem. For optimisation purpose, symbiotic organisms search (SOS) algorithm has been used. A platform independent of the control parameter is unique and exhibits paramount features of this algorithm. The formulated work has been tested on different areas of smart grid applications viz. residential, commercial and industrial types of customers. A comparison of outcomes, obtained from several algorithms with the proposed SOS algorithm, has been carried out on the basis of peak load reduction leading to lessening of a utility bill. Finally, it is proven that demand management, while using the SOS approach, exhibits better accuracy than the other algorithms compared in the present framework.


    1. 1)
      • 1. Buchholz, B.M., Styczynski, Z.: ‘Smart grids – fundamentals and technologies in electricity networks’ (Springer, Heidelberg, 2014), (eBook).
    2. 2)
      • 2. Sinha, A., Neogi, S., Lahiri, R.N., et al: ‘Smart grid initiative for power distribution utility in India’. Proc. Power and Energy Society General Meeting, July 2011, pp. 18.
    3. 3)
      • 3. Benettia, G., Caprinoa, D., Vedovab, M.L.D., et al: ‘Electric load management approaches for peak load reduction: a systematic literature review and state of the art’, Sust. Cities Soc., 2015, 20, pp. 124141.
    4. 4)
      • 4. Meyabadi, A.F., Deihimi, M.H.: ‘A review of demand-side management: reconsidering theoretical framework’, Renew. Sustain. Energy Rev., 2017, 80, pp. 367379.
    5. 5)
      • 5. Gellings, C.W.: ‘The concept of demand-side management for electric utilities’. Proc. IEEE, 1985, 73, (10), pp. 14681470.
    6. 6)
      • 6. Palensky, P., Dietrich, D.: ‘Demand side management: demand response, intelligent energy systems, and smart loads’, IEEE Trans. Ind. Inf., 2011, 7, (3), pp. 381388.
    7. 7)
      • 7. Logenthiran, T., Srinivasan, D., Shun, T. Z.: ‘Multi-agent system for demand side management in smart grid’. Proc. IEEE PEDS, Singapore, December 2011, pp. 424429.
    8. 8)
      • 8. Saravanan, B.: ‘DSM in an area consisting of residential, commercial and industrial load in smart grid’, Front Energy, 2015, 9, (2), pp. 211216.
    9. 9)
      • 9. Fadlullah, M.Z., Quan, D.M., Kato, N., et al: ‘GTES: An optimized game-theoretic demand-side management scheme for smart grid’, IEEE Syst. J., 2014, 8, (2), pp. 588597.
    10. 10)
      • 10. Li, C., Yu, X., Yu, W., et al: ‘Efficient computation for sparse load shifting in demand side management’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 250261.
    11. 11)
      • 11. Hayes, B., H-Gil, I., Collin, A., et al: ‘Optimal power flow for maximizing network benefits from demand-side management’, IEEE Trans. Power Syst., 2014, 29, (4), pp. 17391747.
    12. 12)
      • 12. Ashok, S., Banerjee, R.: ‘An optimization mode for industrial load management’, IEEE Trans. Power Syst., 2001, 16, (4), pp. 879884.
    13. 13)
      • 13. Medina, J., Muller, N., Roytelman, I.: ‘Demand response and distribution grid operations: opportunities and challenges’, IEEE Trans. Smart Grid, 2010, 1, (2), pp. 193198.
    14. 14)
      • 14. Logenthiran, T., Srinivasan, D., Shun, T.Z.: ‘Demand side management in smart grid using heuristic optimization’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 12441252.
    15. 15)
      • 15. Adika, C.O., Wang, L.: ‘Demand-side bidding strategy for residential energy management in a smart grid environment’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 17241733.
    16. 16)
      • 16. Chiu, T.C., Shih, Y.Y., Pang, A.C., et al: ‘Optimized day-ahead pricing with renewable energy demand-side management for smart grids’, IEEE Internet Things J., 2017, 4, (2), pp. 374383.
    17. 17)
      • 17. Samadi, P., Mohsenian-Rad, A.H., Schober, R., et al: ‘Optimal real-time pricing algorithm based on utility maximization for smart grid’. Proc. Smart Grid Communication, Gaithersburg, MD, USA, November 2010, pp. 415420.
    18. 18)
      • 18. Tushar, M.H.K., Zeineddine, A.W., Assi, C.: ‘Demand-side management by regulating charging and discharging of the EV, ESS, and utilizing renewable energy’, IEEE Trans. Ind. Inf., 2018, 14, (1), pp. 110.
    19. 19)
      • 19. Flores, J.T., Celeste, W.C., Coura, D.J.C., et al: ‘Demand planning in smart homes’, IEEE Latin Am. Trans., 2016, 14, (7), pp. 32473255.
    20. 20)
      • 20. Di Somma, M., Graditi, G., Heydarian-Forushani, E., et al: ‘Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects’, Renew. Energy, 2018, 116, pp. 272287.
    21. 21)
      • 21. Ghazzai, H., Kadri, A.: ‘Joint demand-side management in smart grid for green collaborative mobile operators under dynamic pricing and fairness setup’, IEEE Trans. Green Commun. Netw., 2017, 1, (1), pp. 7488.
    22. 22)
      • 22. Pedrasa, M.A.A., Spooner, T.D., MacGill, I.F.: ‘Scheduling of demand side resources using binary particle swarm optimization’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 11731181.
    23. 23)
      • 23. Di Silvestre, M.L., Graditi, G., Sanseverino, E.R.: ‘A generalized framework for optimal sizing of distributed energy resources in micro-grids using an indicator-based swarm approach’, IEEE Trans. Ind. Inf., 2014, 10, (1), pp. 152162.
    24. 24)
      • 24. Cheng, M.Y., Prayogo, D.: ‘Symbiotic organisms search: a new metaheuristic optimization algorithm’, Comput. Struct., 2014, 139, pp. 98112.
    25. 25)
      • 25. Verma, S., Saha, S., Mukherjee, V.: ‘A novel symbiotic organisms search algorithm for congestion management in deregulated environment’, J. Exp. Theor. Artif. Intell., 2015, 21, (1), pp. 5979.
    26. 26)
      • 26. Wu, H., Zhou, Y., Luo, Q., et al: ‘Training feedforward neural networks using symbiotic organisms search algorithm’, Comput. Intell. Neurosci., 2016, 2016, pp. 114.
    27. 27)
      • 27. Vidal, A.R.S., Jacobs, L.A.A., Batista, L.S.: ‘An evolutionary approach for the demand side management optimization in smart grid’. Proc. IEEE Computational Intelligence Applications in Smart Grid (CIASG), January 2014, pp. 17.
    28. 28)
      • 28. Logenthiran, T., Srinivasan, D., Phyu, E.: ‘Particle swarm optimization for demand side management in smart grid’. Proc. IEEE Innovative Smart Grid Technologies, Asia, November 2015, pp. 16.

Related content

This is a required field
Please enter a valid email address