http://iet.metastore.ingenta.com
1887

Distributed secondary control of battery energy storage systems in a stand-alone microgrid

Distributed secondary control of battery energy storage systems in a stand-alone microgrid

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The conventional hierarchical control in an islanded microgrid (MG) does not consider the long time-span dynamics of distributed storages (DSs). The main challenge in control of battery energy storage systems (BESSs) is different levels of stored energy in terms of state of charge (SoC). In power droop control, the energy of the BESSs with lower initial SoC is drained earlier, and their capacities become unachievable. Moreover, using droop control to balance the SoC of BESSs, deviates the steady state frequency and voltage from the nominal values. However, restoration of the MG frequency employing the conventional distributed secondary controllers disturbs SoC-balancing, since SoC of BESSs are ignored. In this paper, a new distributed storage secondary controller (DSSC) scheme is designed for restoration of the voltage and frequency of a stand-alone MG, and to provide power-sharing and SoC-balancing, using a distributed cooperative architecture. The cooperative DSs are controllable and exchange the information with neighbor DSs through a communication network. The unknown output power of the uncooperative renewable distributed generation (DG) is considered as external disturbance to the DSSC. The designed DSSC is robust against the variation of the communication configuration, and eliminates the necessity to communicate with uncontrollable DGs and loads.

References

    1. 1)
      • 1. Lasseter, B.: ‘Microgrids [distributed power generation]’. 2001 IEEE Power Engineering Society Winter Meeting. Conf. Proc. (Cat. No.01CH37194), Columbus, OH, USA, 28 January–1 February 2001.
    2. 2)
      • 2. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop-controlled Ac and Dc microgrids-a general approach towards standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172.
    3. 3)
      • 3. Vasquez, J.C., Guerrero, J.M., Savaghebi, M., et al: ‘Modeling, analysis, and design of stationary reference frame droop controlled parallel three-phase voltage source inverters’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12711280.
    4. 4)
      • 4. Palizban, O., Kauhaniemi, K., Guerrero, J.M.: ‘Microgrids in active network management-part I: hierarchical control, energy storage, virtual power plants, and market participation’, Renew. Sustain. Energy Rev., 2014, 36, pp. 428439.
    5. 5)
      • 5. Guerrero, J.M., Chandorkar, M., Lee, T., et al: ‘Advanced control architectures for intelligent microgrids-part I: decentralized and hierarchical control’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12541262.
    6. 6)
      • 6. Yazdanian, M., Mehrizi-Sani, A.: ‘Distributed control techniques in microgrids’, IEEE Trans. Smart Grid, 2014, 5, (6), pp. 29012909.
    7. 7)
      • 7. Tsikalakis, A.G., Hatziargyriou, N.D.: ‘Centralized control for optimizing microgrids operation’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 241248.
    8. 8)
      • 8. Papadaskalopoulos, D., Pudjianto, D., Strbac, G.: ‘Decentralized coordination of microgrids with flexible demand and energy storage’, IEEE Trans. Sustain. Energy, 2014, 5, (4), pp. 14061414.
    9. 9)
      • 9. Etemadi, A.H., Davison, E.J., Iravani, R.: ‘A decentralized robust control strategy for multi-Der microgrids—part I: fundamental concepts’, IEEE Trans. Power Deliv., 2012, 27, (4), pp. 18431853.
    10. 10)
      • 10. Etemadi, A.H., Davison, E.J., Iravani, R.: ‘A generalized decentralized robust control of islanded microgrids’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 31023113.
    11. 11)
      • 11. Pogaku, N., Prodanovic, M., Green, T.C.: ‘Modeling, analysis and testing of autonomous operation of an inverter-based microgrid’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 613625.
    12. 12)
      • 12. Xin, H., Qu, Z., Seuss, J., et al: ‘A self-organizing strategy for power flow control of photovoltaic generators in a distribution network’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 14621473.
    13. 13)
      • 13. Lu, X., Yu, X., Lai, J., et al: ‘A novel distributed secondary coordination control approach for islanded microgrids’, IEEE Trans. Smart Grid, 2018, 9, (4), pp. 27262740.
    14. 14)
      • 14. Lai, J., Zhou, H., Lu, X., et al: ‘Droop-based distributed cooperative control for microgrids with time-varying delays’, IEEE Trans. Smart Grid, 2016, 7, (4), pp. 17751789.
    15. 15)
      • 15. Shafiee, Q., Guerrero, J.M., Vasquez, J.C.: ‘Distributed secondary control for islanded microgrids—a novel approach’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 10181031.
    16. 16)
      • 16. Bidram, A., Davoudi, A., Lewis, F.: ‘A multiobjective distributed control framework for islanded Ac microgrids’, IEEE Trans. Ind. Informat., 2014, 10, (3), pp. 17851798.
    17. 17)
      • 17. Sun, X., Hao, Y., Wu, Q., et al: ‘A multifunctional and wireless droop control for distributed energy storage units in islanded Ac microgrid applications’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 736751.
    18. 18)
      • 18. Bidram, A., Davoudi, A., Lewis, F.L., et al: ‘Distributed cooperative secondary control of microgrids using feedback linearization’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 34623470.
    19. 19)
      • 19. Bidram, A., Davoudi, A., Lewis, F.L., et al: ‘Secondary control of microgrids based on distributed cooperative control of multi-agent systems’, IET GT&D, 2013, 7, (8), pp. 822831.
    20. 20)
      • 20. Lu, X., Yu, X., Lai, J., et al: ‘Distributed secondary voltage and frequency control for islanded microgrids with uncertain communication links’, IEEE Trans. Ind. Inf., 2017, 13, (2), pp. 448460.
    21. 21)
      • 21. Liu, W., Gu, W., Sheng, W.X., et al: ‘Decentralized multi-agent system-based cooperative frequency control for autonomous microgrids with communication constraints’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 446456.
    22. 22)
      • 22. Shotorbani, A.M., Ghassem-Zadeh, S., Mohammadi-Ivatloo, B., et al: ‘A distributed non-lipschitz control framework for self-organizing microgrids with uncooperative and renewable generations’, Int. J. Electr. Power Energy Syst., 2017, 90, pp. 267279.
    23. 23)
      • 23. Shotorbani, A.M., Ghassem-Zadeh, S., Mohammadi-Ivatloo, B., et al: ‘A distributed secondary scheme with terminal sliding mode controller for energy storages in an islanded microgrid’, Int. J. Electr. Power Energy Syst., 2017, 93, pp. 352364.
    24. 24)
      • 24. Morstyn, T., Hredzak, B., Agelidis, V.G.: ‘Control strategies for microgrids with distributed energy storage systems: an overview’, IEEE Trans. Smart Grid, 2018, 9, (4), pp. 36523666.
    25. 25)
      • 25. Chen, M., Rinc, G.A.: ‘Accurate electrical battery model capable of predicting runtime and I–V performance’, IEEE Trans. Smart Grid, 2006, 21, (2), pp. 504511.
    26. 26)
      • 26. Li, Q., Chen, F., Chen, M., et al: ‘Agent-based decentralized control method for islanded microgrids’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 637649.
    27. 27)
      • 27. Palizban, O., Kauhaniemi, K., Guerrero, J.M.: ‘Evaluation of the hierarchical control of distributed energy storage systems in islanded microgrids based on STD IEC/ISO 62264’. 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, July 2016.
    28. 28)
      • 28. Li, C., Coelho, E.A.A., Dragicevic, T., et al: ‘Multiagent-based distributed state of charge balancing control for distributed energy storage units in Ac microgrids’, IEEE Trans. Ind. Appl., 2017, 53, (3), pp. 23692381.
    29. 29)
      • 29. Shanxu, D., Yu, M., Jian, X., et al: ‘Parallel operation control technique of voltage source inverters in UPS’. Proc. IEEE Int. Conf. Power Electronics Drive System, Hong Kong, July 1999.
    30. 30)
      • 30. Maharjan, L., Inoue, S., Akagi, H., et al: ‘State-of-charge (Soc)-balancing control of a battery energy storage system based on a cascade Pwm converter’, IEEE Trans. Power Electron., 2009, 24, (6), pp. 16281636.
    31. 31)
      • 31. Kakigano, H., Miura, Y., Ise, T.: ‘Distribution voltage control for Dc microgrids using fuzzy control and gain-scheduling technique’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 22462258.
    32. 32)
      • 32. Xu, Y., Zhang, W., Hug, G., et al: ‘Cooperative control of distributed energy storage systems in a microgrid’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 238248.
    33. 33)
      • 33. Fridman, E.: ‘Introduction to time-delay systems, analysis and control’ (Springer (Birkhauser), Cham, Switzerland, 2014).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.0105
Loading

Related content

content/journals/10.1049/iet-gtd.2018.0105
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address