http://iet.metastore.ingenta.com
1887

MOPSO/FDMT-based Pareto-optimal solution for coordination of overcurrent relays in interconnected networks and multi-DER microgrids

MOPSO/FDMT-based Pareto-optimal solution for coordination of overcurrent relays in interconnected networks and multi-DER microgrids

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The minimisation of discrimination time between main and backup overcurrent (OC) relays is one of the most important issues in power system relays coordination. On account of the massive computation burden and complexities for determining power system breakpoint, the implementation of the previously reported OC protection methods in large interconnected networks is almost impossible or at least cumbersome. In this regard, a variety of optimisation algorithms have been presented for coordination between relays and finding optimal operation time (OT) of the protection system. The previously reported single-objective optimisation algorithms have some limitations/drawbacks regarding OT of relays and their coordination. In this study, a new multi-objective optimisation algorithm is presented for coordination of OC relays in interconnected networks, based on multi-objective particle swarm optimisation (MOPSO) and fuzzy decision-making tool (FDMT). Then, using some useful assumption and recommendations of IEC-6090 and fault calculations for the microgrids including distributed energy resources, the proposed method is generalised for OC relay coordination in microgrids. Finally, the proposed method has been successfully implemented on different test systems and the obtained results have been compared with other reported methods to prove accuracy, authenticity, and efficiency of the MOPSO/FDMT-based protection and relay coordination algorithm.

References

    1. 1)
      • 1. Solati-Alkaran, D., Vatani, M.R., Sanjari, M.J., et al: ‘Optimal overcurrent relay coordination in interconnected networks by using fuzzy-based GA method’, IEEE Trans. Smart Grid, 2016, PP, (99), pp. 111.
    2. 2)
      • 2. Ahmadi, S.A., Karami, H., Sanjari, M.J., et al: ‘Application of hyper-spherical search algorithm for optimal coordination of overcurrent relays considering different relay characteristics’, Int. J. Elect. Power Energy Syst., 2016, 83, (1), pp. 443449.
    3. 3)
      • 3. Jannati, M., Vahidi, B., Hosseinian, S.H., et al: ‘A new adaptive single phase auto-reclosure scheme for EHV transmission lines’. Proc. 12th IEEE Int. Middle-East Power Systems Conf. (MEPCON), Aswan, Egypte, March 2008, pp. 203207.
    4. 4)
      • 4. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., et al: ‘A new current limiting strategy and fault model to improve fault ride-through capability of inverter interfaced DERs in autonomous microgrids’, Sust. Energy Technol. Assess., 2017, 24, (C), pp. 7181, doi: 10.1016/j.seta.2017.02.004.
    5. 5)
      • 5. Bedekar, P.P., Bhide, S.R.: ‘Optimum coordination of directional overcurrent relays using the hybrid GA-NLP approach’, IEEE Trans. Power Deliv., 2011, 26, (1), pp. 109119.
    6. 6)
      • 6. Ahmadi, S.A., Karami, H., Gharehpetian, G.B.: ‘Comprehensive coordination of combined directional overcurrent and distance relays considering miscoordination reduction’, Int. J. Elect. Power Energy Syst., 2017, 92, (1), pp. 4252.
    7. 7)
      • 7. Mohammadi, R., Abyaneh, H.A., Rudsari, H.M., et al: ‘Overcurrent relays coordination considering the priority of constraints’, IEEE trans. Power Deliv., 2011, 26, (3), pp. 19271938.
    8. 8)
      • 8. Abyaneh, H.A., Al-Dabbagh, H., Karegar, H.K., et al: ‘A new optimal approach for coordination of overcurrent relays in interconnected power systems’, IEEE Trans. Power Deliv., 2003, 18, (2), pp. 430435.
    9. 9)
      • 9. Kargar, H.K., Askarian-Abyaneh, H., Ohis, V., et al: ‘Pre-processing of the optimal coordination of overcurrent’, Elect. Power Syst. Res., 2005, 75, (1), pp. 134141.
    10. 10)
      • 10. Amraee, T.: ‘Coordination of directional overcurrent relays using seeker algorithm’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 14151422.
    11. 11)
      • 11. Salazara, C.A.C., Enríqueza, A.C., Schaeffer, S.E.: ‘Directional overcurrent relay coordination considering non-standardized time curves’, Elect. Power Syst. Res., 2015, 122, (1), pp. 4249.
    12. 12)
      • 12. Razavi, F., Abyaneh, H.A., Al-Dabbagh, M., et al: ‘A new comprehensive genetic algorithm method for optimal overcurrent relays coordination’, Elect. Power Syst. Res., 2008, 78, (1), pp. 713720.
    13. 13)
      • 13. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., et al: ‘Three phase AC/DC power-flow for balanced/unbalanced microgrids including wind/solar, droop-controlled and electronically-coupled distributed energy resources using RBF neural networks’, IET Power Electron., 2017, 10, (3), pp. 313328, doi: 10.1049/iet-pel.2016.0010.
    14. 14)
      • 14. Kashefi-Kaviani, A., Baghaee, H.R., Riahy, G.H.: ‘Optimal sizing of a standalone wind/photovoltaic generation unit using particle swarm optimization’, Simul., Int. Trans. Soc. Model. Simul., 2009, 85, (2), pp. 8999, doi: 10.1177/0037549708101181.
    15. 15)
      • 15. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B.: ‘Performance improvement of multi-DER microgrid for small and large-signal disturbances and nonlinear loads: novel complementary control loop and fuzzy controller in a hierarchical droop-based control scheme’, IEEE Syst. J., 2016, PP, (99), pp. 18, doi: 10.1109/JSYST.2016.2580617.
    16. 16)
      • 16. Baghaee, H.R., Jannati, M., Vahidi, B., et al: ‘Improvement of voltage stability and reduce power system losses by optimal GA-based allocation of multi-type FACTS devices’. Proc. 11th IEEE Int. Conf. on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Romania, May 2008, pp. 209214.
    17. 17)
      • 17. Parizad, A., Baghaee, H.R., Tavakoli, A., et al: ‘Optimization of arc models parameter using genetic algorithm’. Proc. 9th IEEE Int. Conf. on Electric Power & Energy Conversion Systems (EPECS), Sharjah, UAE, November 2009, pp. 16.
    18. 18)
      • 18. Baghaee, H.R., Kaviani, A.K., Mirsalim, M., et al: ‘Harmonic optimization in single DC source multi-level inverters using RBF neural networks’. Proc. 3rd Power Electronics & Drive Systems and Technologies Conf. (PEDSTC), Tehran, Iran, February 2012, pp. 403409.
    19. 19)
      • 19. So, C.W., Li, K.K.: ‘Intelligent method for protection coordination’. Proc. IEEE Conf. Electric Utility Deregulation and Research Power Technologies, Hong Kong, China, April 2004, pp. 378382.
    20. 20)
      • 20. Mohammadi, R., Abyaneh, H.A., Razavi, F., et al: ‘Optimal relays coordination efficient method in interconnected power systems’, J. Electr. Eng., 2010, 61, (2), pp. 7583.
    21. 21)
      • 21. Adelnia, F., Moravej, Z., Farzinfar, M.: ‘A new formulation for coordination of directional overcurrent relays in interconnected networks’, Int. Trans. Electr. Energy Syst., 2015, 25, (1), pp. 120137.
    22. 22)
      • 22. Bedekar, P.P., Bhide, S.R.: ‘Optimum coordination of overcurrent relay timing using continuous genetic algorithm’, Expert Sys. Appl., 2011, 38, (1), pp. 1128611292.
    23. 23)
      • 23. So, C.W., Li, K.K.: ‘Time coordination method for power system protection by evolutionary’, IEEE Trans. Ind. Appl., 2000, 36, (5), pp. 12351240.
    24. 24)
      • 24. Keil, T., Jäger, J.: ‘Advanced coordination method for overcurrent protection relays nonstandard tripping character’, IEEE Trans. Power Deliv., 2008, 23, (1), pp. 5257.
    25. 25)
      • 25. Saleh, K.A., Zeineldin, H.H., Al-Hinai, A., et al: ‘Optimal coordination of directional overcurrent relays using a new time–current–voltage characteristic’, IEEE Trans. Power Deliv., 2014, 30, (2), pp. 537544.
    26. 26)
      • 26. Baghaee, H.R., Jannati, M., Vahidi, B., et al: ‘Optimal multi-type FACTS allocation using genetic algorithm to improve power system security’. Proc. 12th IEEE Int. Middle-East Power Systems Conf. (MEPCON), Aswan, Egypt, March 2008, pp. 162166.
    27. 27)
      • 27. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B.: ‘Search algorithms for engineering optimization: chapter 8 – application of harmony search algorithm in power engineering’ (Chapter Book-Chapter 8, InTech Open Access Publishing, Crovatia, 2013).
    28. 28)
      • 28. Kazemi, A., Parizad, A., Baghaee, H.R.: ‘On the use of harmony search algorithm in optimal placement of FACTS devices to improve power system security’. Proc. IEEE EURO Conf. (EUROCON), Saint-Petersburg, Russia, May 2009, pp. 540576.
    29. 29)
      • 29. Majidi, B., Baghaee, H.R., Gharehpetian, G.B., et al: ‘Harmonic optimization in multi-level inverters using harmony search algorithm’. Proc. IEEE 2nd Int. Power and Energy Conf. (PECon), Johor Bahru, Malaysia, December 2008, pp. 646650.
    30. 30)
      • 30. Baghaee, H.R., Vahidi, B., Jazebi, S., et al: ‘Power system security improvement by using differential evolution algorithm based FACTS allocation’. Proc. IEEE Power India Conf. (POWERCON), New Delhi, India, October 2008, pp. 537544.
    31. 31)
      • 31. Jazebi, S., Baghaee, H.R., Gharehpetian, G.B.: ‘Optimal variable-gain neural network-based UPFC controller by means of differential evolution algorithm’, Int. Rev. Electr. Eng., 2010, 3, (3), pp. 10631077.
    32. 32)
      • 32. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., et al: ‘Reliability/cost based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system’, Energy, 2016, 115, (1), pp. 10221041, doi: 10.1016/j.energy.2016.09.007.
    33. 33)
      • 33. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., et al: ‘Security/cost-based optimal allocation of multi-type FACTS devices using multi-objective particle swarm optimization’, Simul. Int. Trans. Soc. Model. Simul., 2012, 88, (8), pp. 9991010, doi: 10.1177/0037549712438715.
    34. 34)
      • 34. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B.: ‘Multi-objective optimal power management and sizing of a reliable wind/PV microgrid with hydrogen energy storage using MOPSO’, J. Intel. Fuzzy Syst., 2017, 32, (3), pp. 17531773, doi: 10.3233/JIFS-152372.
    35. 35)
      • 35. Alam, M.N., Das, B., Pant, V.: ‘A comparative study of metaheuristic optimization approaches for directional overcurrent relays coordination’, Elect. Power Syst. Res., 2015, 128, (1), pp. 3952.
    36. 36)
      • 36. Moraveja, Z., Adelnia, F., Abbasi, F., et al: ‘Optimal coordination of directional overcurrent relays using NSGA’, Elect. Power Syst. Res., 2015, 119, (1), pp. 228236.
    37. 37)
      • 37. Baghaee, H.R., Abedi, M.: ‘Calculation of weighting factors of static security indices used in contingency ranking of power systems based on fuzzy logic and analytical hierarchy process’, Int. J. Electr. Power Energy Syst., 2011, 33, (4), pp. 855860, doi: 10.1016/j.ijepes.2010.12.012.
    38. 38)
      • 38. Jäger, J., Lubiatowski, R., Ziegler, G., et al: ‘Protection security assessment for large power systems’. Proc. PowerTech, Bucharest, Romania, July 2009, pp. 16.
    39. 39)
      • 39. Alam, M.N., Das, B., Pant, V., et al: ‘An interior point method based protection coordination scheme for directional overcurrent relays in meshed networks’, Int. J. Elec. Power Energy Syst., 2016, 81, (1), pp. 153164.
    40. 40)
      • 40. Jäger, J., Keil, T., Dienstbier, A., et al: ‘Network security assessment-An important task in distribution systems with dispersed generation’. Proc. CIRED Electricity Distribution – Part 1, Prague, Czech Republic, 8–11 June 2009, pp. 14.
    41. 41)
      • 41. Soman, S.A.: ‘Lecture on power system protection (web) module 4 and 5. Available at: http://www.nptel.ac.in/courses/108101039/.
    42. 42)
      • 42. Gers, H., Juan, M.: ‘Protection of electricity distribution networks’ (Institution of Engineering and Technology, London, UK, 2011, 3rd edn.).
    43. 43)
      • 43. Solati-Alkaran, D., Vatani, M.R., Sanjari, M.J., et al: ‘Overcurrent relays coordination in interconnected networks using accurate analytical method and based on determination fault critical’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 870877.
    44. 44)
      • 44. IEC Standard for Single Input Energizing Quantity Measuring Relays with Dependent Specified Time, IEC Standard 255–4, 1976.
    45. 45)
      • 45. Saborido, R., Ruiz, A.B., Bermúdez, J.D., et al: ‘Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection’, Appl. Soft Comput., 2016, 39, (1), pp. 4863.
    46. 46)
      • 46. Ezzeddine, M., et al: ‘Novel method for optimal coordination of directional overcurrent relays considering their available discrete settings and several operation characteristics’, Electr. Power Syst. Res., 2011, 81, (1), pp. 14751481.
    47. 47)
      • 47. ABB Group. (2016). ABB Relion prod. fam. Zurich, Switzerland. Available at: http://new.abb.com/substationautomation/products/protection-control/relion-product-family/relion-615-series.
    48. 48)
      • 48. Westinghouse Electric Corp.: ‘Applied protective relaying’ (Westinghouse Electric Corp., FL, 1979, 1st edn.).
    49. 49)
      • 49. Power system test scenario archive’ (Westinghouse Electric Corp., FL, USA, 1979, 1st edn.) Available at: http://www.ee.washington.edu/research/pstca.
    50. 50)
      • 50. Zimmerman, R.D., Murillo-Sanchez, C.E., Thomas, R.J.: ‘Matpower's extensible optimal power flow architecture’. Proc. IEEE Power and Energy Society General Meeting, Calgary, AB, Canada, July 2009, pp. 17.
    51. 51)
      • 51. Muda, H., Jena, P.: ‘Superimposed adaptive sequence current based microgrid protection: a new technique’, IEEE Trans. Power Deliv., 2017, 32, (2), pp. 757767.
    52. 52)
      • 52. Zarei, S.F., Parniani, M.: ‘A comprehensive digital protection scheme for low voltage microgrids with inverter-based and conventional distributed generations’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 441452.
    53. 53)
      • 53. Hooshyar, A., Iravani, R.: ‘Microgrid protection’, Proc. IEEE, 2017, 105, (7), pp. 10321053, doi: 10.1109/JPROC.2017.266934.
    54. 54)
      • 54. Baghaee, H.R., Mirsalim, M., Sanjari, M.J., et al: ‘Effect of type and interconnection of DG units in the fault level of distribution networks’. Proc. 13th Power Electronics & Motion Control Conf. (EPE-PEMC), Poznan, Poland, September 2008, pp. 313319.
    55. 55)
      • 55. Zamani, M.A., Sidhu, T.S., Yazdani, A.: ‘A protection strategy and microprocessor-based relay for low-voltage microgrids’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 18731883.
    56. 56)
      • 56. Baghaee, H.R., Mirsalim, M., Sanjari, M.J., et al: ‘Fault current reduction in distribution systems with distributed generation units by a new dual functional series compensator’. Proc. 13th Power Electronics & Motion Control Conf. (EPE-PEMC), Pozn, Poland, September 2008, pp. 750757.
    57. 57)
      • 57. Boutsika, T.N., Papathanassiou, S.A.: ‘Short-circuit calculations in networks with distributed gen’, Elect. Power Syst. Res., 2007, 78, (1), pp. 11811191.
    58. 58)
      • 58. Short-circuit currents in three-phase a.c. systems – Part 0: calculation of short-circuit currents, IEC 60909–0, 2016.
    59. 59)
      • 59. Short-circuit currents in three-phase a.c. systems – Part 1: factors for the calculation of short-circuit currents according to IEC, IEC 60909-1, 2002.
    60. 60)
      • 60. Short-circuit currents in three-phase a.c. systems – Part 2: Data of electrical equipment for short-circuit current calculations, IEC 60909-2, 2008.
    61. 61)
      • 61. Short-circuit currents in three-phase AC systems – Part 3: Currents during two separate simultaneous line-to-earth short circuits and partial short-circuit currents flowing through earth, IEC 60909-3, 2013.
    62. 62)
      • 62. Short-circuit currents in three-phase a.c. systems – Part 4: examples for the calculation of short-circuit currents, IEC 60909-4, 2000.
    63. 63)
      • 63. Etemadi, A.H., Iravani, R.: ‘Overcurrent and overload protection of directly voltage-controlled distributed resources in a microgrid’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 56295638.
    64. 64)
      • 64. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B.: ‘Power calculation using RBF neural networks to improve power sharing of hierarchical control scheme in multi-DER microgrids’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (4), pp. 12171225, doi: 10.1109/JESTPE.2016.2581762.
    65. 65)
      • 65. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B.: ‘Real-time verification of new controller to improve small/large-signal stability and fault ride-through capability of multi-DER microgrids’, IET Gener. Transm. Distrib., 2016, 10, (12), pp. 30683084, doi: 10.1049/iet-gtd.2016.0315.
    66. 66)
      • 66. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., et al: ‘Eigenvalue, robustness and time delay analysis of hierarchical control scheme in multiDER microgrid to enhance small/large-signal stability using complementary loop and fuzzy logic controller’, J. Circuits Syst. Comput., 2016, 26, (6), pp. 130, doi: 10.1142/S0218126617500992.
    67. 67)
      • 67. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., et al: ‘Nonlinear load sharing and voltage compensation of microgrids based on harmonic power-flow calculations using radial basis function neural networks’, IEEE Syst. J., 2017, PP, (99), pp. 111, doi: 10.1109/JSYST.2016.2645165.
    68. 68)
      • 68. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., et al: ‘A decentralized power management and sliding mode control strategy for hybrid AC/DC microgrids including renewable energy resources’, IEEE Trans. Ind. Inf., 2017, PP, (99), pp. 115, doi: 10.1109/TII.2017.2677943.
    69. 69)
      • 69. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., et al: ‘Decentralized sliding mode control of WG/PV/FC microgrids under unbalanced and nonlinear load conditions for on and off-grid modes’, IEEE Syst. J., 2017, PP, (99), pp. 112, doi: 10.1109/JSYST.2017.2761792.
    70. 70)
      • 70. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., et al: ‘A generalized descriptor-system robust H∞ control of autonomous microgrids to improve small and large signal stability considering communication delays and load nonlinearities’, Int. J. Electr. Power Energy Syst., 2017, 92, (1), pp. 6382, doi: 10.1016/j.ijepes.2017.04.007.
    71. 71)
      • 71. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., et al: ‘A decentralized robust mixed H2/H∞ voltage control scheme to improve small/large-signal stability and FRT capability of islanded multi-DER microgrid considering load disturbances’, IEEE Syst. J., 2017, PP, (99), pp. 111, doi: 10.1109/JSYST.2017.2716351.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.0079
Loading

Related content

content/journals/10.1049/iet-gtd.2018.0079
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address