http://iet.metastore.ingenta.com
1887

Harmonic reduction methods for electrical generation: a review

Harmonic reduction methods for electrical generation: a review

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study provides a comprehensive literature review of techniques for harmonic related power quality improvement of electrical generation systems. Increasing interest in these aspects is due to ever more stringent power quality requirements, deriving from new grid codes and compliance standards, aimed at limiting waveform harmonic distortion at all points of the distribution network. Although a wealth of literature is available for such techniques, it has never been compiled into a handbook incorporating all the solutions aimed at both electrical machine and power system engineers.

References

    1. 1)
      • 1. Bollen, M.H.: ‘Overview of power quality and power quality standards’, in Anderson, P.M. (Ed.): ‘Understanding power quality problems: voltage sags and interruptions’ (Wiley-IEEE Press, Piscataway, NJ, USA, 2000), pp. 134.
    2. 2)
      • 2. Grigsby, L.L.: ‘The electric power engineering handbook’ (CRC Press, Boca Raton, FL, USA, 2000).
    3. 3)
      • 3. Jenkins, N., Allan, R., Crossley, P., et al: ‘Embedded generation’ (Institution of Engineering and Technology, London, UK, 2000).
    4. 4)
      • 4. Halpin, S.M.: ‘Harmonics in power systems’, in Grigsby, L.L. (Ed.): ‘Electric power generation, transmission, and distribution’, vol. 5 (CRC Press, Boca Raton, FL, USA, 2012, 3rd edn.), pp. 110.
    5. 5)
      • 5. IEEE: ‘IEEE recommended practices and requirements for harmonic control in electrical power systems’, 1993.
    6. 6)
      • 6. Debruyne, C., Desmet, J., Rens, J., et al: ‘The effect of a reduced power quality on the energy efficiency of stand-alone generator systems’. 2015 IEEE Int. Electric Machines & Drives Conf. (IEMDC), Coeur d'Alene, ID, USA, May 2015, pp. 19021909.
    7. 7)
      • 7. Das, J.C.: ‘Power system analysis: short-circuit load flow and harmonics’ (Marcel Dekker Inc., New York, NY, USA, 2002).
    8. 8)
      • 8. Load Characteristics Task Force and Effects of Harmonics Task Force: ‘The effects of power system harmonics on power system equipment and loads’, IEEE Trans. Power Appar. Syst., 1985, PAS-104, (9), pp. 25552563.
    9. 9)
      • 9. Dugan, R.C., Santoso, S., McGranaghan, M.F., et al: ‘Electrical power systems quality’ (McGraw Hill Professional, New York, NY, USA, 2002).
    10. 10)
      • 10. Robinson, R.B.: ‘Harmonics in a.c. rotating machines’, Proc. IEE – Part C, Monogr., 1962, 109, (16), pp. 380387.
    11. 11)
      • 11. Lin, H.C.: ‘Identification of interharmonics using disperse energy distribution algorithm for flicker troubleshooting’, IET Sci. Meas. Technol., 2016, 10, (7), pp. 786794.
    12. 12)
      • 12. Dalali, M., Jalilian, A.: ‘Indices for measurement of harmonic distortion in power systems according to IEC 61000-4-7 standard’, IET Gener. Transm. Distrib., 2015, 9, (14), pp. 19031912.
    13. 13)
      • 13. Lincoln, P.M.: ‘Wave form distortions and their effects on electrical apparatus’, Trans. Am. Inst. Electr. Eng., 1913, XXXII, (1), pp. 765774.
    14. 14)
      • 14. Ćuk, V., Cobben, J.F.G., Ribeiro, P.F., et al: ‘A review of international limits for harmonic voltages and currents in public networks’. 2014 16th Int. Conf. on Harmonics and Quality of Power (ICHQP), Bucharest, Romania, May 2014, pp. 621625.
    15. 15)
      • 15. IEEE: ‘IEEE recommended practice and requirements for harmonic control in electric power systems’, 2014.
    16. 16)
      • 16. Emanuel, A.E.: ‘Harmonics in the early years of electrical engineering: a brief review of events, people and documents’. Ninth Int. Conf. on Harmonics and Quality of Power. Proc. (Cat. No. 00EX441), Orlando, FL, USA, October 2000, vol. 1, pp. 17.
    17. 17)
      • 17. Owen, E.L.: ‘A history of harmonics in power systems’, IEEE Ind. Appl. Mag., 1998, 4, (1), pp. 612.
    18. 18)
      • 18. Thompson, S.P.: ‘Polyphase electric currents and alternate-current motors’ (Spon & Chamberlain, London, UK, 1900).
    19. 19)
      • 19. Foster, W.J.: ‘Potential waves of alternating-current generators’, Trans. Am. Inst. Electr. Eng., 1913, XXXII, (1), pp. 749764.
    20. 20)
      • 20. Tessarolo, A.: ‘Accurate computation of multiphase synchronous machine inductances based on winding function theory’, IEEE Trans. Energy Convers., 2012, 27, (4), pp. 895904.
    21. 21)
      • 21. Pyrhonen, J., Jokinen, T., Hrabovcova, V.: ‘Design of rotating electrical machines’ (John Wiley & Sons, Chichester, UK, 2009).
    22. 22)
      • 22. Lipo, T.A.: ‘Winding distribution in an ideal machine’, in ‘Analysis of synchronous machines’ (CRC Press, Boa Raton, FL, USA, 2012, 2nd edn.), pp. 176.
    23. 23)
      • 23. Bache-Wiig, J.: ‘Application of fractional pitch windings to alternating-current generators’, Proc. Am. Inst. Electr. Eng., 1908, 27, (5), pp. 657665.
    24. 24)
      • 24. Jordan, S., Manolopoulos, C.D., Apsley, J.M.: ‘Winding configurations for five-phase synchronous generators with diode rectifiers’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 517525.
    25. 25)
      • 25. Adams, C.A.: ‘Electromotive force wave-shape in alternators’, Proc. Am. Inst. Electr. Eng., 1909, 28, (7), pp. 791814.
    26. 26)
      • 26. Nguyen, D., Dutta, R., Rahman, M.F., et al: ‘Performance of a sensorless controlled concentrated-wound interior permanent-magnet synchronous machine at low and zero speed’, IEEE Trans. Ind. Electron., 2016, 63, (4), pp. 20162026.
    27. 27)
      • 27. Xia, B., Shen, J.X., Luk, P.C.K., et al: ‘Comparative study of air-cored axial-flux permanent-magnet machines with different stator winding configurations’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 846856.
    28. 28)
      • 28. Galea, M., Gerada, C., Hamiti, T.: ‘Design considerations for an outer rotor, field wound, flux switching machine’. 2012 XXth Int. Conf. on Electrical Machines, Marseille, France, September 2012, pp. 171176.
    29. 29)
      • 29. Reddy, P.B., Huh, K.K., EL-Refaie, A.M.: ‘Generalized approach of stator shifting in interior permanent-magnet machines equipped with fractional-slot concentrated windings’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 50355046.
    30. 30)
      • 30. Fallows, D., Nuzzo, S., Costabeber, A., et al: ‘Power quality improvement by pre-computed modulated field current for synchronous generators’. Proc. of Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Nottingham, UK, 2017.
    31. 31)
      • 31. Nuzzo, S., Degano, M., Galea, M., et al: ‘Improved damper cage design for salient-pole synchronous generators’, IEEE Trans. Ind. Electron., 2016, PP, (99), pp. 11.
    32. 32)
      • 32. Galea, M., Gerada, C., Raminosoa, T., et al: ‘Design of a high force density tubular permanent magnet motor’. The XIX Int. Conf. on Electrical Machines – ICEM 2010, Rome, Italy, September 2010, pp. 16.
    33. 33)
      • 33. Duran, M.J., Barrero, F.: ‘Recent advances in the design, modeling, and control of multiphase machines – part II’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 459468.
    34. 34)
      • 34. Boldea, I.: ‘Large and medium power synchronous generators’, in Grigsby, L.L. (Ed.): ‘Synchronous generators’, vol. 2 (CRC Press, Boca Raton, FL, USA, 2005), p. 4-1-4-56.
    35. 35)
      • 35. Smith, S.P.: ‘The non-salient pole turbo-alternator and its characteristics’, Electr. Eng. J. Inst., 1911, 47, (209), pp. 562601.
    36. 36)
      • 36. Eden, T.S.: ‘Relative merits of Y and delta connection for alternators’, Proc. Am. Inst. Electr. Eng., 1914, 33, (5), pp. 791794.
    37. 37)
      • 37. Bewley, L.V.: ‘Induced voltage of electrical machines’, Trans. Am. Inst. Electr. Eng., 1930, 49, (2), pp. 456466.
    38. 38)
      • 38. Worrall, G.W.: ‘Magnetic oscillations in alternators’, Electr. Eng. J. Inst. Of, 1907, 39, (184), pp. 206220.
    39. 39)
      • 39. Nuzzo, S., Galea, M., Gerada, C., et al: ‘Damper cage loss reduction and no-load voltage THD improvements in salient-pole synchronous generators’. 8th IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2016), Glasgow, UK, April 2016, pp. 17.
    40. 40)
      • 40. Kostenko, M.P., Piotrovskiĭ, L.M.: ‘Electrical machines’ (Foreign Languages Publishing House, Moscow, Russia, 1968).
    41. 41)
      • 41. Nuzzo, S., Galea, M., Gerada, C., et al: ‘A fast method for modelling skew and its effects in salient-pole synchronous generators’, IEEE Trans. Ind. Electron., 2017, PP, (99), p. 1.
    42. 42)
      • 42. Aydin, M., Gulec, M.: ‘Reduction of cogging torque in double-rotor axial-flux permanent-magnet disk motors: a review of cost-effective magnet-skewing techniques with experimental verification’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 50255034.
    43. 43)
      • 43. Hague, B.: ‘The shape of pole-shoe required to produce a sinusoidal distribution of air-gap flux density’, J. Inst. Electr. Eng., 1924, 62, (335), pp. 921929.
    44. 44)
      • 44. Wang, Y., Vakil, G., Nuzzo, S., et al: ‘Sensitivity analysis for performance and power density improvements in salient-pole synchronous generators’. Proc. of Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Nottingham, UK, 2017.
    45. 45)
      • 45. Kimbark, E.W.: ‘Power system stability’ (Wiley-IEEE Press, New York, NY, USA, 1995).
    46. 46)
      • 46. Wagner, C.F.: ‘Damper windings for water-wheel generators’, Trans. Am. Inst. Electr. Eng., 1931, 50, (1), pp. 140151.
    47. 47)
      • 47. George, R.B., Bessesen, B.B.: ‘Generator damper windings at Wilson dam’, Electr. Eng., 1939, 58, (4), pp. 166172.
    48. 48)
      • 48. Zhang, D.W., Peng, Y.J., Fan, Z.N.: ‘No-load voltage waveform optimization and rotor heat reduction of tubular hydro-generator’. 2012 Sixth Int. Conf. on Electromagnetic Field Problems and Applications, Dalian, Liaoning, China, June 2012, pp. 14.
    49. 49)
      • 49. Liwschitz-Garik, M.M.: ‘Harmonics of the salient-pole synchronous machine and their effects – part III. Differential leakage of the damper winding with respect to the main wave. Current distribution in the damper bars’, Trans. Am. Inst. Electr. Eng. Part III Power Appar. Syst., 1958, 77, (3), pp. 462469.
    50. 50)
      • 50. Wallin, M., Ranlóf, M., Lundin, U.: ‘Design and construction of a synchronous generator test setup’. The XIX Int. Conf. on Electrical Machines – ICEM 2010, Rome, Italy, September 2010, pp. 15.
    51. 51)
      • 51. Tessarolo, A., Bassi, C., Giulivo, D.: ‘Time-stepping finite-element analysis of a 14-MVA salient-pole shipboard alternator for different damper winding design solutions’, IEEE Trans. Ind. Electron., 2012, 59, (6), pp. 25242535.
    52. 52)
      • 52. Traxler-Samek, G., Zickermann, R., Schwery, A.: ‘Cooling airflow, losses, and temperatures in large air-cooled synchronous machines’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 172180.
    53. 53)
      • 53. Wang, S., Zhao, Z., Yuan, L., et al: ‘Investigation and analysis of the influence of magnetic wedges on high voltage motors performance’. 2008 IEEE Vehicle Power and Propulsion Conf., Harbin, China, September 2008, pp. 16.
    54. 54)
      • 54. American Bureau of Shipping: ‘Guidance notes on control of harmonics in electrical power systems’ (American Bureau of Shipping, Houston, USA, 2006).
    55. 55)
      • 55. Faccioli, G.: ‘Triple harmonics in transformers’, J. Am. Inst. Electr. Eng., 1922, 41, (5), pp. 351359.
    56. 56)
      • 56. Dahl, O.G.C.: ‘Transformer harmonics and their distribution’, Trans. Am. Inst. Electr. Eng., 1925, XLIV, pp. 792805.
    57. 57)
      • 57. Yoon, C., Bai, H., Beres, R.N., et al: ‘Harmonic stability assessment for multiparalleled, grid-connected inverters’, IEEE Trans. Sustain. Energy, 2016, 7, (4), pp. 13881397.
    58. 58)
      • 58. Ebrahimzadeh, E., Blaabjerg, F., Wang, X., et al: ‘Harmonic stability and resonance analysis in large PMSG-based wind power plants’, IEEE Trans. Sustain. Energy, 2018, 9, (1), pp. 1223.
    59. 59)
      • 59. Salis, V., Costabeber, A., Cox, S.M., et al: ‘Stability boundary analysis in single-phase grid-connected inverters with PLL by LTP theory’, IEEE Trans. Power Electron., 2018, 33, (5), pp. 40234036.
    60. 60)
      • 60. Pandi, V.R., Zeineldin, H.H., Xiao, W.: ‘Determining optimal location and size of distributed generation resources considering harmonic and protection coordination limits’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 12451254.
    61. 61)
      • 61. He, J., Li, Y.W., Munir, M.S.: ‘A flexible harmonic control approach through voltage-controlled DG-grid interfacing converters’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 444455.
    62. 62)
      • 62. He, J., Li, Y.W., Wang, X., et al: ‘An improved current control scheme for grid-connected DG unit based distribution system harmonic compensation’. 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), Long Beach, CA, USA, March 2013, pp. 986991.
    63. 63)
      • 63. Liang, X., Andalib-Bin-Karim, C.: ‘Harmonic mitigation through advanced control methods for grid-connected renewable energy sources’. 2017 IEEE Industry Applications Society Annual Meeting, Cincinnati, OH, USA, October 2017, pp. 112.
    64. 64)
      • 64. Kalla, U.K., Singh, B., Murthy, S.S.: ‘Enhanced power generation from two-winding single-phase SEIG using LMDT-based decoupled voltage and frequency control’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 69346943.
    65. 65)
      • 65. Hadjidemetriou, L., Kyriakides, E., Blaabjerg, F.: ‘A robust synchronization to enhance the power quality of renewable energy systems’, IEEE Trans. Ind. Electron., 2015, 62, (8), pp. 48584868.
    66. 66)
      • 66. Brandao, D.I., Paredes, H.K.M., Costabeber, A., et al: ‘Flexible active compensation based on load conformity factors applied to non-sinusoidal and asymmetrical voltage conditions’, IET Power Electron., 2016, 9, (2), pp. 356364.
    67. 67)
      • 67. Ahmadi, D., Wang, J.: ‘Online selective harmonic compensation and power generation with distributed energy resources’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 37383747.
    68. 68)
      • 68. Prodanovic, M., Brabandere, K.D., Keybus, J.V.D., et al: ‘Harmonic and reactive power compensation as ancillary services in inverter-based distributed generation’, IET Gener. Transm. Distrib., 2007, 1, (3), pp. 432438.
    69. 69)
      • 69. Khadem, S.K., Basu, M., Conlon, M.F.: ‘Integration of UPQC for power quality improvement in distributed generation network – a review’. 2011 2nd IEEE PES Int. Conf. and Exhibition on Innovative Smart Grid Technologies, Manchester, UK, December 2011, pp. 15.
    70. 70)
      • 70. Li, D., Zhu, Z.Q.: ‘A novel integrated power quality controller for microgrid’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 28482858.
    71. 71)
      • 71. He, J., Li, Y.W., Blaabjerg, F.: ‘An enhanced islanding microgrid reactive power, imbalance power, and harmonic power sharing scheme’, IEEE Trans. Power Electron., 2015, 30, (6), pp. 33893401.
    72. 72)
      • 72. Sreekumar, P., Khadkikar, V.: ‘Direct control of the inverter impedance to achieve controllable harmonic sharing in the islanded microgrid’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 827837.
    73. 73)
      • 73. Liu, Q., Tao, Y., Liu, X., et al: ‘Voltage unbalance and harmonics compensation for islanded microgrid inverters’, IET Power Electron., 2014, 7, (5), pp. 10551063.
    74. 74)
      • 74. Tang, F., Guerrero, J.M., Vasquez, J.C., et al: ‘Distributed active synchronization strategy for microgrid seamless reconnection to the grid under unbalance and harmonic distortion’, IEEE Trans. Smart Grid, 2015, 6, (6), pp. 27572769.
    75. 75)
      • 75. ‘Tesla Powerpack’. Available at https://www.tesla.com/powerpack. Accessed 02 March 2018.
    76. 76)
      • 76. Yan, S., Tan, S.C., Lee, C.K., et al: ‘Use of smart loads for power quality improvement’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (1), pp. 504512.
    77. 77)
      • 77. Niroomand, M., Feldmann, T., Bollin, E.: ‘High-performance control system for grid-tied ESSs’, IET Gener. Transm. Distrib., 2017, 11, (8), pp. 21382145.
    78. 78)
      • 78. Biebighauser, A., Ghita, A.: ‘Rotor for a rotating electrical machine’, WO2014202985 A3, December 2015. Available at https://patents.google.com/patent/WO2014202985A3.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.0008
Loading

Related content

content/journals/10.1049/iet-gtd.2018.0008
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address