http://iet.metastore.ingenta.com
1887

Switching impulse discharge voltage prediction of EHV and UHV transmission lines–tower air gaps by a support vector classifier

Switching impulse discharge voltage prediction of EHV and UHV transmission lines–tower air gaps by a support vector classifier

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Discharge voltage prediction of practical air gaps in transmission projects is a long-sought goal and also a great challenge in high-voltage (HV) engineering. An approach combined electric field simulation, feature extraction and machine learning algorithm is presented in this study to predict the switching impulse discharge voltages of extra-HV (EHV) and ultra-HV (UHV) transmission lines–tower air gaps. Some features extracted from the electrostatic field distribution are used to characterise the air-gap configuration and taken as input parameters of a prediction model established by a support vector classifier (SVC). Three kinds of actual gap configurations in EHV and UHV transmission lines are taken as test samples to validate the validity of the SVC model. Trained by experimental data of rod–plane gaps and one of the engineering gap configurations, this model is able to predict the discharge voltages of the other two conductor-tower gaps with acceptable accuracy. The mean absolute percentage errors of the three prediction results are 6.84, 4.19 and 3.46%. This research demonstrates the feasibility of discharge voltage prediction for complicated engineering gaps, which is useful to reduce the costly full-scale tests and helpful to guide the external insulation design.

References

    1. 1)
      • 1. Huang, D.C., Shu, Y.B., Ruan, J.J., et al: ‘Ultra high voltage transmission in China: developments, current status and future prospects’, Proc. IEEE, 2009, 97, (3), pp. 555583.
    2. 2)
      • 2. CIGRE Working Group C4.306.: ‘Insulation coordination for UHV AC systems’ (CIGRE, Paris, France, 2013), pp. 2082.
    3. 3)
      • 3. Menemenlis, C., Harbec, G.: ‘Switching impulse breakdown of EHV transmission towers’, IEEE Trans. Power Appl. Syst., 1974, 93, (1), pp. 255263.
    4. 4)
      • 4. Cortina, R., Garbagnati, E., Pigini, A., et al: ‘Switching impulse strength of phase-to-Earth UHV external insulation – research at the 1000 kV project’, IEEE Trans. Power Appl. Syst., 1985, 104, (11), pp. 31613168.
    5. 5)
      • 5. Chen, Y., Meng, G., Xie, L., et al: ‘Research on air-gap discharge characteristics of 750 kV one tower double-circuit transmission line’, High Volt. Eng., 2008, 34, (10), pp. 21182123.
    6. 6)
      • 6. Huo, F., Hu, W., Xu, T., et al: ‘Air-gaps flashover characteristics for 1000 kV AC compact tower’, High Volt. Eng., 2011, 37, (8), pp. 18751881.
    7. 7)
      • 7. Liao, Y.L., Li, R.H., Gao, C., et al: ‘Flashover tests on air gap of  ± 800 kV DC transmission line under composite DC and switching impulse voltage’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (5), pp. 20952101.
    8. 8)
      • 8. Gallet, G., Leroy, G., Lacey, R., et al: ‘General expression for positive switching impulse strength valid up to extra-long air gaps’, IEEE Trans. Power Appl. Syst., 1975, 94, (6), pp. 19891993.
    9. 9)
      • 9. Kishizima, I., Matsumoto, K., Watanabe, Y.: ‘New facilities for phase-to-phase switching impulse tests and some test results’, IEEE Trans. Power Appl. Syst., 1984, 103, (6), pp. 12111216.
    10. 10)
      • 10. Rizk, F.A.M.: ‘A model for switching impulse leader inception and breakdown of long air gaps’, IEEE Trans. Power Deliv., 1989, 4, (1), pp. 596606.
    11. 11)
      • 11. Paris, L.: ‘Influence of air gap characteristics on line-to-ground switching surge strength’, IEEE Trans. Power Appl. Syst., 1967, 86, (8), pp. 936947.
    12. 12)
      • 12. CIGRE Working Group 33.07.: ‘Guidelines for the evaluation of the dielectric strength of external insulation’ (CIGRE, Paris, France, 1992), pp. 2942.
    13. 13)
      • 13. Hutzler, B., Hutzler-Barre, D.: ‘Leader propagation model for predetermination of switching surge flashover voltage of large air gaps’, IEEE Trans. Power Appl. Syst., 1978, 97, (4), pp. 10871096.
    14. 14)
      • 14. Goelian, N., Lalande, P., Bondiou-Clergerie, A., et al: ‘A simplified model for the simulation of positive-spark development in long air gaps’, J. Phys. D, Appl. Phys., 1997, 30, (17), pp. 24412452.
    15. 15)
      • 15. Becerra, M., Cooray, V.: ‘A simplified physical model to determine the lightning upward connecting leader inception’, IEEE trans. Power Deliv., 2006, 21, (2), pp. 897908.
    16. 16)
      • 16. Arevalo, L., Wu, D., Jacobson, B.: ‘A consistent approach to estimate the breakdown voltage of high voltage electrodes under positive switching impulses’, J. Appl. Phys., 2013, 114, (8), pp. 083301.
    17. 17)
      • 17. Fofana, I., Beroual, A., Rakotonandrasana, J.-H.: ‘Application of dynamic models to predict switching impulse withstand voltages of long air gaps’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (1), pp. 8997.
    18. 18)
      • 18. Qiu, Z.B., Ruan, J.J., Huang, D.C., et al: ‘A prediction method for breakdown voltage of typical air gaps based on electric field features and support vector machine’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (4), pp. 21252135.
    19. 19)
      • 19. Qiu, Z.B., Ruan, J.J., Huang, D.C., et al: ‘Hybrid prediction of the power frequency breakdown voltage of short air gaps based on orthogonal design and support vector machine’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (2), pp. 795805.
    20. 20)
      • 20. Qiu, Z.B., Ruan, J.J., Huang, C.P., et al: ‘A method for breakdown voltage prediction of short air gaps with atypical electrodes’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 26852694.
    21. 21)
      • 21. Qiu, Z.B., Ruan, J.J., Xu, W.J., et al: ‘Energy storage features and a predictive model for switching impulse flashover voltages of long air gaps’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (5), pp. 27032711.
    22. 22)
      • 22. IEC 60061-1.: ‘High-voltage test techniques – part 1: general definitions and test requirements’, 2010.
    23. 23)
      • 23. Vapnik, V.N.: ‘The nature of statistical learning theory’ (Springer-Verlag, New York, 1995, 2nd edn.).
    24. 24)
      • 24. Huo, F.: ‘Study on insulation characteristics and electric field distribution of long air-gaps for UHV power transmission line’. PhD thesis, Wuhan University, 2012.
    25. 25)
      • 25. IEC 60071-2: ‘Insulation co-ordination – part 2: application guide’, 1996.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.2081
Loading

Related content

content/journals/10.1049/iet-gtd.2017.2081
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address