Kullback–Leibler divergence-based distributionally robust optimisation model for heat pump day-ahead operational schedule to improve PV integration

Kullback–Leibler divergence-based distributionally robust optimisation model for heat pump day-ahead operational schedule to improve PV integration

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

For its high coefficient of performance and zero local emissions, the heat pump (HP) has recently become popular in North Europe and China, which shows potential in absorbing local photovoltaic (PV) generation. In this study, the authors describe a distributionally robust optimisation (DRO)-based HP day-ahead operational schedule model (HP-DOSM) to match the PV power generation, which can well capture the uncertainties of weather, PV, and load prediction errors. Moreover, this DRO-based HP-DOSM can be transformed into a tractable deterministic model. The DRO method they proposed is suitable for linear expectation constrained optimisation whose ambiguity set is constructed using Kullback–Leibler divergence, which could be further transformed into deterministic conic/linear constraints. Compared with robust optimisation (RO) models, the authors’ model is less conservative since more statistical information on the uncertainties is utilised. Numerical tests were conducted to demonstrate its performance, compared with the RO model via Monte Carlo simulations.


    1. 1)
      • 1. Ibañez-Puy, M., Bermejo-Busto, J., Martín-Gómez, C., et al: ‘Thermoelectric cooling heating unit performance under real conditions’, Appl. Energy, 2017, 200, pp. 303314.
    2. 2)
      • 2. EHPA: ‘European heat pump association’, Outlook European Heat Pump Statistics, 2011.
    3. 3)
      • 3. Arteconi, A., Hewitt, N.J., Polonara, F.: ‘Domestic demand-side management (DSM): role of heat pumps and thermal energy storage (TES) systems’, Appl. Therm. Eng., 2013, 51, (1–2), pp. 155165.
    4. 4)
      • 4. Gao, Z., Chen, D.-M., Yang, J.-H., et al: ‘Study on rural low-voltage distribution network planning with coal-to-electricity project’, Electr. Electron., 2015.
    5. 5)
      • 5. Xinhua, available at
    6. 6)
      • 6. Wanjiru, E.M., Sichilalu, S.M., Xia, X.: ‘Optimal control of heat pump water heater-instantaneous shower using integrated renewable-grid energy systems’, Appl. Energy, 2017, 201, pp. 332342.
    7. 7)
      • 7. Howlader, H.O.R., Matayoshi, H., Senjyu, T.: ‘Distributed generation incorporated with the thermal generation for optimum operation of a smart grid considering forecast error’, Energy Convers. Manage., 2015, 96, pp. 303314.
    8. 8)
      • 8. Vanhoudt, D., Geysen, D., Claessens, B., et al: ‘An actively controlled residential heat pump: potential on peak shaving and maximization of self-consumption of renewable energy’, Renew. Energy, 2014, 63, pp. 531543.
    9. 9)
      • 9. Wang, D., Ge, S., Jia, H., et al: ‘A demand response and battery storage coordination algorithm for providing microgrid tie-line smoothing services’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 476486.
    10. 10)
      • 10. Klein, K., Herkel, S., Henning, H.M., et al: ‘Load shifting using the heating and cooling system of an office building: quantitative potential evaluation for different flexibility and storage options’, Appl. Energy, 2017, 203, pp. 917937.
    11. 11)
      • 11. Wiesemann, W., Kuhn, D., Sim, M.: ‘Distributionally robust convex optimization’, Oper. Res., 2014, 62, (6), pp. 13581376.
    12. 12)
      • 12. Zhang, Y., Shen, S., Mathieu, J.: ‘Distributionally robust chance-constrained optimal power flow with uncertain renewables and uncertain reserves provided by loads’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 13781388.
    13. 13)
      • 13. Zymler, S., Kuhn, D., Rustem, B.: ‘Distributionally robust joint chance constraints with second-order moment information’, Math. Program., 2011, 137, (1–2), pp. 167198.
    14. 14)
      • 14. Xiong, P., Jirutitijaroen, P., Singh, C.: ‘A distributionally robust optimization model for unit commitment considering uncertain wind power generation’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 3949.
    15. 15)
      • 15. Delage, E., Ye, Y.: ‘Distributionally robust optimization under moment uncertainty with application to data-driven problems’, Oper. Res., 2008, 58, (3), pp. 595612.
    16. 16)
      • 16. Loizou, N.: ‘Distributionally robust game theory’, 2015, arXiv:1512.03253.
    17. 17)
      • 17. Kuhn, D., Esfahani, P.M.: ‘Data-driven distributionally robust optimization using the Wasserstein metric Performance guarantees and tractable reformulations’, Optim. Control, 2016, 24, (9), pp. 152.
    18. 18)
      • 18. Jiang, R., Guan, Y.: ‘Data-driven chance constrained stochastic program’, Math. Program., 2016, 158, (1), pp. 291327.
    19. 19)
      • 19. Chen, X., Zhang, Y.: ‘Uncertain linear programs: extended affinely adjustable robust counterparts’, Oper. Res., 2009, 57, (6), pp. 14691482.
    20. 20)
      • 20. Ben-Tal, A., Hertog, D.D., Waegenaere, A.D., et al: ‘Robust solutions of optimization problems affected by uncertain probabilities’, Manage. Sci., 2013, 59, (2), pp. 341357.
    21. 21)
      • 21. Hu, Z., Hong, L.J.: ‘Kullback-leibler divergence constrained distributionally robust optimization’. 2012,
    22. 22)
      • 22. Huang, K.-L., Mehrotra, S., Bansal, M.: ‘Decomposition algorithms for two-stage distributionally robust mixed binary programs’, 2017.
    23. 23)
      • 23. Li, X., Natarajan, K., Teo, C.-P., et al: ‘Distributionally robust mixed integer linear programs: persistency models with applications’, Eur. J. Oper. Res., 2014, 233, (3), pp. 459473.
    24. 24)
      • 24. Chen, X., Wu, W., Zhang, B., et al: ‘Data-driven DG capacity assessment method for active distribution networks’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 39463957.
    25. 25)
      • 25. Peng, J.W., Li, H., Zhang, C.L.: ‘Performance comparison of air-source heat pump water heater with different expansion devices’, Appl. Therm. Eng., 2016, 99, pp. 11901200.
    26. 26)
      • 26. Jiang, S., Wang, S., Jin, X., et al: ‘Optimum compressor cylinder volume ratio for two-stage compression air source heat pump systems’, Int. J. Refrig., 2016, 67, pp. 7789.
    27. 27)
      • 27. Tant, J., Geth, F., Six, D., et al: ‘Multiobjective battery storage to improve PV integration in residential distribution grids’, IEEE Trans. Sustain. Energy, 2013, 4, (1), pp. 182191.
    28. 28)
      • 28. den Hertog, D., Ben-Tal, A., De Waegenaere, A., et al: ‘Robust solutions of optimization problems affected by uncertain probabilities’, 2011.
    29. 29)
      • 29. ‘China Meteorological Administration’.
    30. 30)
      • 30. Botev, Z.I., Grotowski, J.F., Kroese, D.P.: ‘Kernel density estimation via diffusion’, Ann. Stat., 2010, 38, (5), pp. 29162957.
    31. 31)
      • 31. Li, C., Xu, Y., Yu, X., et al: ‘Risk-averse energy trading in multienergy microgrids: a two-stage stochastic game approach’, IEEE Trans. Ind. Inf., 2017, 13, (5), pp. 26202630.

Related content

This is a required field
Please enter a valid email address