access icon free Efficiency enhancement method without grid partitioning for hard real-time transient simulation of large power grids

Efficient transient simulation of large power grid is of great importance for system operation and dispatching, fault repetition, operator training etc. Online stability estimation and testing on system control and protection require hard real-time performance of transient simulation. The conventional real-time simulation, which splits an entire grid into sub-grids and solves them in parallel, lacks generality for various case systems. This study proposes a new efficiency enhancement method without grid partitioning. Three key techniques are involved. First, parallel solving format is proposed to distribute two-layer computational burdens into central processing unit cores in balance. Second, to calculate the fault changing the grid structure, the inverse current compensation is employed instead of re-forming impedance matrix and repeating lower-upper (LU) decomposition. Third, dual-loop forward and backward substitutions to solve grid equations are modified to a single-loop iteration, which further improves the computational efficiency. At last, the validity and effectiveness of the proposed method are verified by tests.

Inspec keywords: power grids; iterative methods; power system faults; impedance matrix; power system transient stability

Other keywords: backward substitutions; large power grids; real-time simulation; hard real-time performance; online stability estimation; impedance matrix; dual-loop forward substitutions; grid equations; grid structure; efficiency enhancement method; system control testing; hard real-time transient simulation; inverse current compensation; single-loop iteration; parallel solving format; central processing unit cores; LU decomposition

Subjects: Interpolation and function approximation (numerical analysis); Power system control

References

    1. 1)
      • 4. Strunz, K., Carlson, E.: ‘Nested fast and simultaneous solutions for time-domain simulation of integrative power-electric and electronic systems’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 277287.
    2. 2)
      • 28. Baijian, W., Wenxin, G., Jiayi, H., et al: ‘GPU based parallel simulation of transient stability using symplectic Gauss algorithm and preconditioned GMRES method’. 2012 Power Engineering and Automation Conf., Wuhan, 2012, pp. 15.
    3. 3)
      • 5. Khaitan, S.K., McCalley, J.D.: ‘TDPSS: a scalable time domain power system simulator for dynamic security assessment’. 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, Salt Lake City, UT, 2012, pp. 323332.
    4. 4)
      • 19. Pai, M., Dag, H.: ‘Iterative solver techniques in large scale power system computation’. 36th Conf. Decision and Control, San Diego, CA, 1997, pp. 38613866.
    5. 5)
      • 11. Ye, J., Liu, Z., Zhu, L.: ‘The implementation of a spatial parallel algorithm for transient stability simulation on PC cluster’. 2007 Second IEEE Conf. Industrial Electronics and Applications, Harbin, China, 2007, pp. 14891492.
    6. 6)
      • 13. Li, H., Tong, L., Xie, X.: ‘A method of fast stability simulation for online transient predecision’. 2005 IEEE/PES Transmission and Distribution Conf. Exhibition: Asia and Pacific, Dalian, China, 2005, pp. 14.
    7. 7)
      • 10. Tomim, M.A., Martí, J.R., Passos Filho, J.A.: ‘Parallel transient stability simulation based on multi-area Thévenin equivalents’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 3661377.
    8. 8)
      • 27. Jalili-Marandi, V., Zhou, Z., Dinavahi, V.: ‘Large-scale transient stability simulation of electrical power systems on parallel GPUs’. 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, 2012, pp. 111.
    9. 9)
      • 7. Berzins, M., Furzeland, R.: ‘An adaptive theta method for the solution of stiff and non-stiff differential equations’, Appl. Numer. Math., 1992, 9, (1), pp. 119.
    10. 10)
      • 20. Khaitan, S., McCalley, J., Chen, Q.: ‘Multi-frontal solver for online power system time domain simulation’, IEEE Trans. Power Syst., 2008, 23, (4), pp. 17271737.
    11. 11)
      • 6. Sanchez-Gasca, J., Aquila, R.D., Price, W., et al: ‘Variable time step, implicit integration for extended-term power system dynamic simulation’. 1995 IEEE Power Industry Computer Application Conf., Salt Lake City, UT, 1995, pp. 183189.
    12. 12)
      • 12. Shu, J., Xue, W., Zheng, W.: ‘A parallel transient stability simulation for power systems’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 17091717.
    13. 13)
      • 32. Li, X., Canizares, C.A.: ‘Chaotic behavior observations in a power system model’. 2009 IEEE Bucharest PowerTech, Bucharest, 2009, pp. 15.
    14. 14)
      • 24. Armistead, R., Li, F.: ‘Parallel computing of sparse linear systems using matrix condensation algorithm’. 2011 IEEE Trondheim PowerTech, Trondheim, 2011, pp. 16.
    15. 15)
      • 18. Sullivan, B., Shi, J., Mazzola, M., et al: ‘Faster-than-real-time power system transient stability simulation using parallel general Norton with multiport equivalent (PGNME)’. 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, 2017, pp. 15.
    16. 16)
      • 22. Aristidou, P., Lebeau, S., Van Cutsem, T.: ‘Power system dynamic simulations using a parallel two-level Schur-complement decomposition’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 39843995.
    17. 17)
      • 31. Rahimzadeh, S., Tavakoli, M., Viki, A.H.: ‘Simultaneous application of multi-type FACTS devices to the restructured environment: achieving both optimal number and location’, IET Gener. Transm. Distrib., 2010, 4, (3), pp. 349362.
    18. 18)
      • 16. Liu, Y., Jiang, Q.: ‘Two-stage parallel waveform relaxation method for large-scale power system transient stability simulation’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 153162.
    19. 19)
      • 26. Forsyth, P., Kuffel, R., Wierckx, R., et al: ‘Comparison of transient stability analysis and large-scale real-time digital simulation’. IEEE PowerTech., Porto, Portugal, September 2001, pp. 17.
    20. 20)
      • 25. Chai, J.S., Zhu, N., Bose, A., et al: ‘Parallel Newton type methods for power system stability analysis using local and shared memory multiprocessors’, IEEE Trans. Power Syst., 1991, 6, (4), pp. 15391545.
    21. 21)
      • 29. Zhang, S., Zhu, Y., Ou, K., et al: ‘A practical real-time hybrid simulator for modern large HVAC/DC power systems interfacing RTDS and external transient program’. 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, 2016, pp. 15.
    22. 22)
      • 17. Abhyankar, S., Flueck, A.J.: ‘Real-time power system dynamics simulation using a parallel block-Jacobi preconditioned Newton-GMRES scheme’. 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, Salt Lake City, UT, 2012, pp. 299305.
    23. 23)
      • 1. Jalili-Marandi, V., Robert, E., Lapointe, V., et al: ‘A real-time transient stability simulation tool for large-scale power systems’. 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, 2012, pp. 17.
    24. 24)
      • 23. Jin, S., Huang, Z., Diao, R., et al: ‘Parallel implementation of power system dynamic simulation’. 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, July 2013, pp. 15.
    25. 25)
      • 30. Wang, W., Wang, S., Yang, J., et al: ‘Combinatorial optimisation for pulse position modulation-ultra wideband signal detection based on compressed sensing and analogue-to-information converter’, IET Signal Process., 2016, 10, (5), pp. 543548.
    26. 26)
      • 3. Khaitan, S.K., McCalley, J.D.: ‘A class of new preconditioners for linear solvers used in power system time-domain simulation’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 18351844.
    27. 27)
      • 15. Jalili-Marandi, V., Dinavahi, V.: ‘Instantaneous relaxation-based real-time transient stability simulation’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 13271336.
    28. 28)
      • 9. Jorge, A.H., Jose, R.M.: ‘Real-time network simulation with PC-cluster’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 563569.
    29. 29)
      • 2. Huang, Z., Jin, S., Diao, R.: ‘Predictive dynamics emulation for large-scale power system through high-performance computing’. 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, Salt Lake City, UT, 2012, pp. 347354.
    30. 30)
      • 21. Tinney, W.F., Walker, J.W.: ‘Direct solutions of sparse network equations by optimally ordered triangular factorization’, Proc. IEEE, 1967, 55, (11), pp. 18011809.
    31. 31)
      • 8. Daniel, J., Tylavsky Bose, A.: ‘Parallel processing in power systems computation’, IEEE Trans. Power Syst., 1992, 7, (2), pp. 629638.
    32. 32)
      • 14. Hong, C., Shen, C.M.: ‘Implementation for parallel-in-time transient stability analysis algorithms on a message passing multi-computers’. 2000 IEEE Power Engineering Society Winter Meeting, Singapore, Singapore, 2000, pp. 14101415.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.2056
Loading

Related content

content/journals/10.1049/iet-gtd.2017.2056
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading