http://iet.metastore.ingenta.com
1887

Efficiency enhancement method without grid partitioning for hard real-time transient simulation of large power grids

Efficiency enhancement method without grid partitioning for hard real-time transient simulation of large power grids

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Efficient transient simulation of large power grid is of great importance for system operation and dispatching, fault repetition, operator training etc. Online stability estimation and testing on system control and protection require hard real-time performance of transient simulation. The conventional real-time simulation, which splits an entire grid into sub-grids and solves them in parallel, lacks generality for various case systems. This study proposes a new efficiency enhancement method without grid partitioning. Three key techniques are involved. First, parallel solving format is proposed to distribute two-layer computational burdens into central processing unit cores in balance. Second, to calculate the fault changing the grid structure, the inverse current compensation is employed instead of re-forming impedance matrix and repeating lower-upper (LU) decomposition. Third, dual-loop forward and backward substitutions to solve grid equations are modified to a single-loop iteration, which further improves the computational efficiency. At last, the validity and effectiveness of the proposed method are verified by tests.

References

    1. 1)
      • 1. Jalili-Marandi, V., Robert, E., Lapointe, V., et al: ‘A real-time transient stability simulation tool for large-scale power systems’. 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, 2012, pp. 17.
    2. 2)
      • 2. Huang, Z., Jin, S., Diao, R.: ‘Predictive dynamics emulation for large-scale power system through high-performance computing’. 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, Salt Lake City, UT, 2012, pp. 347354.
    3. 3)
      • 3. Khaitan, S.K., McCalley, J.D.: ‘A class of new preconditioners for linear solvers used in power system time-domain simulation’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 18351844.
    4. 4)
      • 4. Strunz, K., Carlson, E.: ‘Nested fast and simultaneous solutions for time-domain simulation of integrative power-electric and electronic systems’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 277287.
    5. 5)
      • 5. Khaitan, S.K., McCalley, J.D.: ‘TDPSS: a scalable time domain power system simulator for dynamic security assessment’. 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, Salt Lake City, UT, 2012, pp. 323332.
    6. 6)
      • 6. Sanchez-Gasca, J., Aquila, R.D., Price, W., et al: ‘Variable time step, implicit integration for extended-term power system dynamic simulation’. 1995 IEEE Power Industry Computer Application Conf., Salt Lake City, UT, 1995, pp. 183189.
    7. 7)
      • 7. Berzins, M., Furzeland, R.: ‘An adaptive theta method for the solution of stiff and non-stiff differential equations’, Appl. Numer. Math., 1992, 9, (1), pp. 119.
    8. 8)
      • 8. Daniel, J., Tylavsky Bose, A.: ‘Parallel processing in power systems computation’, IEEE Trans. Power Syst., 1992, 7, (2), pp. 629638.
    9. 9)
      • 9. Jorge, A.H., Jose, R.M.: ‘Real-time network simulation with PC-cluster’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 563569.
    10. 10)
      • 10. Tomim, M.A., Martí, J.R., Passos Filho, J.A.: ‘Parallel transient stability simulation based on multi-area Thévenin equivalents’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 3661377.
    11. 11)
      • 11. Ye, J., Liu, Z., Zhu, L.: ‘The implementation of a spatial parallel algorithm for transient stability simulation on PC cluster’. 2007 Second IEEE Conf. Industrial Electronics and Applications, Harbin, China, 2007, pp. 14891492.
    12. 12)
      • 12. Shu, J., Xue, W., Zheng, W.: ‘A parallel transient stability simulation for power systems’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 17091717.
    13. 13)
      • 13. Li, H., Tong, L., Xie, X.: ‘A method of fast stability simulation for online transient predecision’. 2005 IEEE/PES Transmission and Distribution Conf. Exhibition: Asia and Pacific, Dalian, China, 2005, pp. 14.
    14. 14)
      • 14. Hong, C., Shen, C.M.: ‘Implementation for parallel-in-time transient stability analysis algorithms on a message passing multi-computers’. 2000 IEEE Power Engineering Society Winter Meeting, Singapore, Singapore, 2000, pp. 14101415.
    15. 15)
      • 15. Jalili-Marandi, V., Dinavahi, V.: ‘Instantaneous relaxation-based real-time transient stability simulation’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 13271336.
    16. 16)
      • 16. Liu, Y., Jiang, Q.: ‘Two-stage parallel waveform relaxation method for large-scale power system transient stability simulation’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 153162.
    17. 17)
      • 17. Abhyankar, S., Flueck, A.J.: ‘Real-time power system dynamics simulation using a parallel block-Jacobi preconditioned Newton-GMRES scheme’. 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, Salt Lake City, UT, 2012, pp. 299305.
    18. 18)
      • 18. Sullivan, B., Shi, J., Mazzola, M., et al: ‘Faster-than-real-time power system transient stability simulation using parallel general Norton with multiport equivalent (PGNME)’. 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, 2017, pp. 15.
    19. 19)
      • 19. Pai, M., Dag, H.: ‘Iterative solver techniques in large scale power system computation’. 36th Conf. Decision and Control, San Diego, CA, 1997, pp. 38613866.
    20. 20)
      • 20. Khaitan, S., McCalley, J., Chen, Q.: ‘Multi-frontal solver for online power system time domain simulation’, IEEE Trans. Power Syst., 2008, 23, (4), pp. 17271737.
    21. 21)
      • 21. Tinney, W.F., Walker, J.W.: ‘Direct solutions of sparse network equations by optimally ordered triangular factorization’, Proc. IEEE, 1967, 55, (11), pp. 18011809.
    22. 22)
      • 22. Aristidou, P., Lebeau, S., Van Cutsem, T.: ‘Power system dynamic simulations using a parallel two-level Schur-complement decomposition’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 39843995.
    23. 23)
      • 23. Jin, S., Huang, Z., Diao, R., et al: ‘Parallel implementation of power system dynamic simulation’. 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, July 2013, pp. 15.
    24. 24)
      • 24. Armistead, R., Li, F.: ‘Parallel computing of sparse linear systems using matrix condensation algorithm’. 2011 IEEE Trondheim PowerTech, Trondheim, 2011, pp. 16.
    25. 25)
      • 25. Chai, J.S., Zhu, N., Bose, A., et al: ‘Parallel Newton type methods for power system stability analysis using local and shared memory multiprocessors’, IEEE Trans. Power Syst., 1991, 6, (4), pp. 15391545.
    26. 26)
      • 26. Forsyth, P., Kuffel, R., Wierckx, R., et al: ‘Comparison of transient stability analysis and large-scale real-time digital simulation’. IEEE PowerTech., Porto, Portugal, September 2001, pp. 17.
    27. 27)
      • 27. Jalili-Marandi, V., Zhou, Z., Dinavahi, V.: ‘Large-scale transient stability simulation of electrical power systems on parallel GPUs’. 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, 2012, pp. 111.
    28. 28)
      • 28. Baijian, W., Wenxin, G., Jiayi, H., et al: ‘GPU based parallel simulation of transient stability using symplectic Gauss algorithm and preconditioned GMRES method’. 2012 Power Engineering and Automation Conf., Wuhan, 2012, pp. 15.
    29. 29)
      • 29. Zhang, S., Zhu, Y., Ou, K., et al: ‘A practical real-time hybrid simulator for modern large HVAC/DC power systems interfacing RTDS and external transient program’. 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, 2016, pp. 15.
    30. 30)
      • 30. Wang, W., Wang, S., Yang, J., et al: ‘Combinatorial optimisation for pulse position modulation-ultra wideband signal detection based on compressed sensing and analogue-to-information converter’, IET Signal Process., 2016, 10, (5), pp. 543548.
    31. 31)
      • 31. Rahimzadeh, S., Tavakoli, M., Viki, A.H.: ‘Simultaneous application of multi-type FACTS devices to the restructured environment: achieving both optimal number and location’, IET Gener. Transm. Distrib., 2010, 4, (3), pp. 349362.
    32. 32)
      • 32. Li, X., Canizares, C.A.: ‘Chaotic behavior observations in a power system model’. 2009 IEEE Bucharest PowerTech, Bucharest, 2009, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.2056
Loading

Related content

content/journals/10.1049/iet-gtd.2017.2056
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address