Partial discharge ultrasonic detection based on EULER-MUSIC algorithm and conformal array sensor

Partial discharge ultrasonic detection based on EULER-MUSIC algorithm and conformal array sensor

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A conformal array sensor suitable for partial discharge (PD) detection of electrical equipment was designed which displays multiple characteristics including compatibility with the surface of any carrier without affecting the performance of the carrier. Taking a cylindrical conformal array as an example, the simulation model was given and the array flow pattern of the cylindrical conformal array sensor was determined. Based on the Euler transform, the algorithm of multiple signal classification (MUSIC) was improved. An algorithm of array signal direction finding suitable for conformal array sensors was proposed and its performance under different signal-to-noise ratios and different array elements was simulated. The improved algorithm and conformal array sensor were used to simulate and test the PD signal. The results show that the algorithm and the conformal array sensor are suitable for PD detection of electrical equipment.


    1. 1)
      • 1. Qi, Z.S., Guo, Y., Wang, B.H., et al: ‘DOA estimation of cylindrical conformal array antenna based on ESPRIT algorithm’, Syst. Eng. Electron., 2011, 33, (8), pp. 17271731(in Chinese).
    2. 2)
      • 2. Josefsson, L., Persson, P: ‘Conformal array antenna theory and Design’ (IEEE Press, 2011), vol. 129, (2), pp. 126127.
    3. 3)
      • 3. Boeringer, D.W., Werner, D.H.: ‘Efficiency-constrained particle swarm optimization of a modified bernstein polynomial for conformal array excitation amplitude synthesis’, IEEE Trans. Antennas Propag., 2005, 53, (8), pp. 26622673.
    4. 4)
      • 4. Knott, P: ‘Antenna design and beamforming for a conformal antenna array demonstrator’. IEEE Aerospace Conf., 2006, vol. 16, (3), pp. 10881094.
    5. 5)
      • 5. Knott, P: ‘Faceted vs. Smoothly curved antenna front-end for a conformal array radar demonstrator’. IEEE European Radar Conf., 2005, pp. 193–196.
    6. 6)
      • 6. Caille, G., Vourch, E., Martin, M.J., et al: ‘Conformal array antenna for observation platforms in low Earth orbit’, IEEE Antennas Propag. Mag., 2002, 44, (3), pp. 103104.
    7. 7)
      • 7. Zhou, R., Sun, J., Wei, S., et al: ‘Synthesis of conformal array antenna for hypersonic platform SAR using modified particle swarm optimisation’, IET Radar Sonar Navig., 2017, 11, (8), pp. 12351242.
    8. 8)
      • 8. Wang, Y., Wang, Y.L., Zhang, Y., et al: ‘Accurate computation of electrically large conformal antenna array’, J. Microw., 2016, (s1), pp. 4750 (in Chinese).
    9. 9)
      • 9. Qi, Z.S., Guo, Y., Wang B, H., et al: ‘Blind DOA estimation algorithm for cylindrical conformal array with respect to polarization diversity’, Chin. J. Radio Sci., 2011, 26, (2), pp. 245252 (in Chinese).
    10. 10)
      • 10. Zhang, L., Guo, Y., Qi Z, S.: ‘DOA estimation on noncircular signals with cylindrical conformal array antenna based on RARE’, Appl. Res. Comput., 2017, 34, (8), pp. 25022505 (in Chinese).
    11. 11)
      • 11. Kuang, K.F., Xu, Y.G., Liu Z, W.: ‘Direction of arrival estimation for noncircular signals using conformal array’, J. Signal Process., 2015, 31, (5), pp. 551558 (in Chinese).
    12. 12)
      • 12. Gottardi, G., Turrina, L., Anselmi, N., et al: ‘Sparse conformal array design for multiple patterns generation through multi-task Bayesian compressive sensing’. IEEE Int. Symp. on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017, pp. 429430.
    13. 13)
      • 13. Li, W.T., Shi, X.W., Yong, Q.H., et al: ‘A hybrid optimization algorithm and Its application for conformal array pattern synthesis’, IEEE Trans. Antennas Propag., 2010, 58, (10), pp. 34013406.
    14. 14)
      • 14. Gao, S., Zhang, Y., Xie, Q., et al: ‘Research on partial discharge source localization based on an ultrasonic array and a step-by-step over-complete dictionary’, Energies, 2017, 10, (5), p. 593.
    15. 15)
      • 15. Guo W, H: ‘Cylindrical and conical conformal array’ (Xi'an Electronic and Science University, 2014) (in Chinese).
    16. 16)
      • 16. Zhao, F: ‘Analysis and synthesis study of conformal phased antenna array and experiment’ (National University of Defense Technology, 2012) (in Chinese).
    17. 17)
      • 17. Gao, Z., Xiao, Y.: ‘Direction of arrival estimation for conformal arrays with diverse polarizations’. IEEE Int. Conf. on Electronic Measurement & Instruments, 2016, pp. 439442.
    18. 18)
      • 18. Hsiao, J., Cha, A.: ‘Patterns and polarizations of simultaneously excited planar arrays on a conformal surface’, IEEE Trans. Antennas Propag., 1974, 22, (1), pp. 8184.
    19. 19)
      • 19. He, Q.Q., Wang, B.Z., Shao, W.: ‘Radiation pattern calculation for arbitrary conformal arrays that include mutual-coupling effects’, IEEE Antennas Propag. Mag., 2010, 52, (2), pp. 5763.
    20. 20)
      • 20. Wang, B.H., Guo, Y., Wang, Y.L., et al: ‘Array manifold modeling for conformal array antenna’, Acta Electron. Sin., 2009, 37, (3), pp. 481484 (in Chinese).
    21. 21)
      • 21. Liu, S., Yan, F.G., Jin, M., et al: ‘Joint polarization-DOA estimation for conical conformal array based on quaternion MUSIC’, Syst. Eng. Electron., 2016, 38, (1), pp. 17, (in Chinese).
    22. 22)
      • 22. Zhang, X.F., Wang, F., Xu D, Z.: ‘Array signal processing theory and application’ (National Defense Industry Press, 2010), (in Chinese).
    23. 23)
      • 23. Xie, Q., Cheng, S.Y., Lv, F.C., et al: ‘Locating partial discharge in oil using the improved circular ultrasonic array sensor’, High Volt. Eng., 2013, 39, (5), pp. 10541060, (in Chinese).
    24. 24)
      • 24. Xie, Q., Huang, H., Liu, D., et al: ‘Method of sparse design based on the dimension reduction technology and the double partial discharge sources positioning test’, IET Sci. Meas. Technol., 2016, 10, (7), pp. 795804.
    25. 25)
      • 25. Xie, Q., Wang, Y., Li, T., et al: ‘Application of signal sparse decomposition in the detection of partial discharge by ultrasonic array method’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (4), pp. 20312040.
    26. 26)
      • 26. Xie, Q., Lv, F.C., Zheng, S.S., et al: ‘Experimental analysis of partial discharge location in oil using ultrasonic phased array’, High Volt. Eng., 2010, 36, (11), pp. 27112716 (in Chinese).
    27. 27)
      • 27. Kim, Y.S., Kim, B.S., Yong, K.S., et al: ‘Nonintrusive measurement of heart rate using a flexible sensor array’. IEEE Int. Conf. on Consumer Electronics, 2012, pp. 484485.

Related content

This is a required field
Please enter a valid email address