http://iet.metastore.ingenta.com
1887

Cuckoo Search approach enhanced with genetic replacement of abandoned nests applied to optimal allocation of distributed generation units

Cuckoo Search approach enhanced with genetic replacement of abandoned nests applied to optimal allocation of distributed generation units

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Here, it is presented a novel Cuckoo Search (CS) algorithm called Cuckoo-GRN (Cuckoo Search with Genetically Replaced Nests), which combines the benefits of genetic algorithm (GA) into the CS algorithm. The proposed method handles the abandoned nests from CS more efficiently by genetically replacing them, significantly improving the performance of the algorithm by establishing optimal balance between diversification and intensification. The algorithm is used for the optimal location and size of distributed generation units in a distribution system, in order to minimise active power losses while improving system voltage stability and voltage profile. The allocation of single and multiple distribution generation units is considered. The proposed algorithm is extensively tested in mathematical benchmark functions as well as in the 33-bus and 119-bus distribution systems. Simulation results show that Cuckoo-GRN can lead to a substantial performance improvement over the original CS algorithm and others techniques currently known in literature, regarding not only the convergence but also the solution accuracy.

References

    1. 1)
      • B. Kroposki , P.K. Sen , K. Malmedal .
        1. Kroposki, B., Sen, P.K., Malmedal, K.: ‘Optimum sizing and placement of distributed and renewable energy sources in electric power distribution systems’. Proc. IEEE Industry Application Society Annual Meeting - IAS, Houston, USA, November 2009, pp. 110.
        . Proc. IEEE Industry Application Society Annual Meeting - IAS , 1 - 10
    2. 2)
      • S.N.G. Naik , D.K. Khatod , M.P. Sharma .
        2. Naik, S.N.G., Khatod, D.K., Sharma, M.P.: ‘Analytical approach for optimal siting and sizing of distributed generation in radial distribution networks’, IET Gener. Transm. Distrib., 2015, 9, (3), pp. 209220.
        . IET Gener. Transm. Distrib. , 3 , 209 - 220
    3. 3)
      • D.Q. Hung , N. Mithulananthan .
        3. Hung, D.Q., Mithulananthan, N.: ‘Multiple distributed generator placement in primary distribution networks for loss reduction’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 17001708.
        . IEEE Trans. Ind. Electron. , 4 , 1700 - 1708
    4. 4)
      • T. Gozel , M.H. Hocaoglu .
        4. Gozel, T., Hocaoglu, M.H.: ‘An analytical method for the sizing and siting of distributed generators in radial systems’, Electr. Power Syst. Res., 2009, 79, (6), pp. 912918.
        . Electr. Power Syst. Res. , 6 , 912 - 918
    5. 5)
      • S. Kansal , V. Kumar , B. Tyagi .
        5. Kansal, S., Kumar, V., Tyagi, B.: ‘Optimal placement of different type of DG sources in distribution networks’, Electr. Power Energy Syst., 2013, 53, pp. 752760.
        . Electr. Power Energy Syst. , 752 - 760
    6. 6)
      • S. Saha , V. Mukherjee .
        6. Saha, S., Mukherjee, V.: ‘Optimal placement and sizing of DGs in RDS using chaos embedded SOS algorithm’, IET Gener. Transm. Distrib., 2016, 10, (14), pp. 36713680.
        . IET Gener. Transm. Distrib. , 14 , 3671 - 3680
    7. 7)
      • W. Sheng , K.Y. Liu , Y. Liu .
        7. Sheng, W., Liu, K.Y., Liu, Y., et al: ‘Optimal placement and sizing of distributed generation via an improved nondominated sorting genetic algorithm II’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 569578.
        . IEEE Trans. Power Deliv. , 2 , 569 - 578
    8. 8)
      • M. Natarajan , B. Ramadoss , L. Lakshmanarao .
        8. Natarajan, M., Ramadoss, B., Lakshmanarao, L.: ‘Optimal location and sizing of MW and MVAR based DG units to improve voltage stability margin in distribution system using a chaotic artificial bee colony algorithm’. Int. Trans. Electr. Energy Syst., 2016, pp. 114.
        . Int. Trans. Electr. Energy Syst. , 1 - 14
    9. 9)
      • S. Borges , C.M. Affonso , R.C.L. de Oliveira .
        9. Borges, S., Affonso, C.M., de Oliveira, R.C.L., et al: ‘Optimal allocation of wind parks considering wind and load uncertainties using genetic algorithm’. Proc. Int. Conf. on the European Energy Market – EEM, Lisbon, Portugal, 2015.
        . Proc. Int. Conf. on the European Energy Market – EEM
    10. 10)
      • X.S. Yang , S. Deb .
        10. Yang, X.S., Deb, S.: ‘Cuckoo search via Lévy flights’. Proc. World Congress on Nature and Biologically Inspired Computing — NaBIC, Coimbatore, India, December 2009, pp. 210214.
        . Proc. World Congress on Nature and Biologically Inspired Computing — NaBIC , 210 - 214
    11. 11)
      • Z. Moravej , A. Akhlaghi .
        11. Moravej, Z., Akhlaghi, A.: ‘A novel approach based on cuckoo search for DG allocation in distribution network’, Int. J. Electr. Power Energy Syst., 2013, 44, pp. 672679.
        . Int. J. Electr. Power Energy Syst. , 672 - 679
    12. 12)
      • T.T. Nguyen , A.V. Truong , T.A. Phung .
        12. Nguyen, T.T., Truong, A.V., Phung, T.A.: ‘A novel method based on adaptive cuckoo search for optimal network reconfiguration and distributed generation allocation in distribution network’, Electr. Power Energy Syst., 2016, 78, pp. 801815.
        . Electr. Power Energy Syst. , 801 - 815
    13. 13)
      • H. Chiroma , T. Herawan , I. Fister .
        13. Chiroma, H., Herawan, T., Fister, I., et al: ‘Bio-inspired computation: recent development on the modifications of the cuckoo search algorithm’, Appl. Soft Comput., 2017, 61, pp. 149173.
        . Appl. Soft Comput. , 149 - 173
    14. 14)
      • S.S. Akumalla , S. Peddakotla , S.R.A. Kuppa .
        14. Akumalla, S.S., Peddakotla, S., Kuppa, S.R.A.: ‘A modified cuckoo search algorithm for improving voltage profile and to diminish power losses by locating multi-type FACTS devices’, J. Control. Autom. Electr. Syst., 2016, 27, pp. 93104.
        . J. Control. Autom. Electr. Syst. , 93 - 104
    15. 15)
      • M. Chakravorty , D. Das .
        15. Chakravorty, M., Das, D.: ‘Voltage stability analysis of radial distribution networks’, Int. J. Electr. Power Energy Syst., 2001, 23, (2), pp. 129135.
        . Int. J. Electr. Power Energy Syst. , 2 , 129 - 135
    16. 16)
      • M.C.A. Neto , J.P.L. Araújo , F.J.B. Barros .
        16. Neto, M.C.A., Araújo, J.P.L., Barros, F.J.B., et al: ‘Bioinspired multiobjective synthesis of X-band FSS via general regression neural network and cuckoo search algorithm’, Microw. Opt. Technol. Lett., 2015, 57, pp. 24002405.
        . Microw. Opt. Technol. Lett. , 2400 - 2405
    17. 17)
      • M. Khodier .
        17. Khodier, M.: ‘Optimisation of antenna arrays using the cuckoo search algorithm’, IET Microw. Antennas Propag., 2013, 7, (6), pp. 458464.
        . IET Microw. Antennas Propag. , 6 , 458 - 464
    18. 18)
      • N. Dey , S. Samanta , X. Yang .
        18. Dey, N., Samanta, S., Yang, X., et al: ‘Optimisation of scaling factors in electrocardiogram signal watermarking using cuckoo search’, Int. J. Bio-Inspired Comput., 2013, 5, (5), pp. 315326.
        . Int. J. Bio-Inspired Comput. , 5 , 315 - 326
    19. 19)
      • I. Pavlyukevich .
        19. Pavlyukevich, I.: ‘Lévy flights, non-local search and simulated annealing’, J. Comput. Phys., 2007, 226, pp. 18301844.
        . J. Comput. Phys. , 1830 - 1844
    20. 20)
      • A.V. Chechkin , R. Metzler , J. Klafter . (2008)
        20. Chechkin, A.V., Metzler, R., Klafter, J., et al: ‘Introduction to the theory of Lévy flights’, in Klages, R., Radons, G., Sokolov, I.M. (Eds.): ‘Anomalous transport: foundations and applications’ (John Wiley & Sons Ltd, Berlin, Germany, 2008), pp. 129162.
        .
    21. 21)
      • K.F. Man , K.S. Tang , S. Kwong .
        21. Man, K.F., Tang, K.S., Kwong, S.: ‘Genetic algorithms: concepts and applications [in engineering design]’, IEEE Trans. Ind. Electron., 1996, 43, (5), pp. 519534.
        . IEEE Trans. Ind. Electron. , 5 , 519 - 534
    22. 22)
      • O. Kramer . (2017)
        22. Kramer, O.: ‘Genetic algorithm essentials’ (Springer International Publishing, Cham, Switzerland, 2017).
        .
    23. 23)
      • M. Lozano , C. García-Martínez .
        23. Lozano, M., García-Martínez, C.: ‘Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: overview and progress report’, Comput. Oper. Res., 2010, 37, (3), pp. 481497.
        . Comput. Oper. Res. , 3 , 481 - 497
    24. 24)
      • R.D. Zimmerman , C.E. Murillo-Sánchez , R.J. Thomas .
        24. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: ‘MATPOWER: steady-state operations, planning and analysis tools for power systems research and education’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 1219.
        . IEEE Trans. Power Syst. , 1 , 12 - 19
    25. 25)
      • M.A. Kashem , V. Ganapathy , G.B. Jasmon .
        25. Kashem, M.A., Ganapathy, V., Jasmon, G.B., et al: ‘A novel method for loss minimization in distribution networks’. Proc. IEEE Int. Conf. on Electric Utility Deregulation and Restructuring and Power Technologies, London, England, April 2000, pp. 251256.
        . Proc. IEEE Int. Conf. on Electric Utility Deregulation and Restructuring and Power Technologies , 251 - 256
    26. 26)
      • K. Mahmoud , N. Yorino , A. Ahmed .
        26. Mahmoud, K., Yorino, N., Ahmed, A.: ‘Optimal distributed generation allocation in distribution systems for loss minimization’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 960969.
        . IEEE Trans. Power Syst. , 2 , 960 - 969
    27. 27)
      • D.R. Prabha , T. Jayabarathi , R. Umamageswari .
        27. Prabha, D.R., Jayabarathi, T., Umamageswari, R., et al: ‘Optimal location and sizing of distributed generation unit using intelligent water drop algorithm’, Sust. Energy Technol. Assessments, 2015, 11, pp. 106113.
        . Sust. Energy Technol. Assessments , 106 - 113
    28. 28)
      • D. Zhang , Z. Fu , L. Zhang .
        28. Zhang, D., Fu, Z., Zhang, L.: ‘An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems’, Electr. Power Syst. Res., 2007, 77, pp. 685694.
        . Electr. Power Syst. Res. , 685 - 694
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1992
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1992
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address