Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fast learning optimiser for real-time optimal energy management of a grid-connected microgrid

This study proposes a novel fast learning optimiser (FLO) for real-time optimal energy management (OEM) of a grid-connected microgrid. To reduce the optimisation difficulty, the non-convex real-time OEM is decomposed into a two-layer optimisation. The non-convex top-layer optimisation is responsible to determine the direction of tie-line power, and the heat energy outputs of combined heat and power units. Then bottom-layer optimisation is strictly convex with the rest controllable variables, which is solved by the classical interior point method. The model-free Q-learning is employed for knowledge learning and decision making in the top-layer optimisation, thus the feedback reward from the bottom-layer optimisation can effectively realise a coordination between them. The real-coded associative memory is presented for a more efficient optimisation of continuous controllable variables. In order to dramatically reduce the execution time, the knowledge transfer is adopted for approximating the optimal knowledge matrices of a real-time new task by abstracting the optimal knowledge matrices of the predictive source tasks. Simulation results demonstrates that the proposed FLO can rapidly search a high-quality optimum of real-time OEM, in which the computation rate is about 2.75–29.23 times faster than that of eight classical heuristic algorithms.

References

    1. 1)
      • 17. Brini, S., Abdallah, H.H., Ouali, A.: ‘Economic dispatch for power system included wind and solar thermal energy’, Leonardo J. Sci., 2009, 14, pp. 204220.
    2. 2)
      • 11. Pan, J., Wang, X., Cheng, Y., et al: ‘Multi-source transfer ELM-based Q learning’, Neurocomputing, 2014, 137, pp. 5764.
    3. 3)
      • 18. Liu, N., Wang, J., Wang, L.: ‘Distributed energy management for interconnected operation of combined heat and power-based microgrids with demand response’, J. Mod. Power Syst. Clean Energy, 2017, 5, (3), pp. 478488.
    4. 4)
      • 14. Liu, Y., Qu, Z., Xin, H., et al: ‘Distributed real-time optimal power flow control in smart grid’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 34033414.
    5. 5)
      • 6. Vasebi, A., Fesanghary, M., Bathaee, S.M.T.: ‘Combined heat and power economic dispatch by harmony search algorithm’, Int. J. Electric. Power Energy Syst., 2007, 29, (10), pp. 713719.
    6. 6)
      • 10. Taylor, M.E., Stone, P.: ‘Transfer learning for reinforcement learning domains: a survey’, J. Mach. Learn. Res., 2009, 10, pp. 16331685.
    7. 7)
      • 23. Subbaraj, P., Rengaraj, R., Salivahanan, S.: ‘Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm’, Appl. Energy, 2009, 86, (6), pp. 915921.
    8. 8)
      • 15. Hesamzadeh, M.R., Galland, O., Biggar, D.R.: ‘Short-run economic dispatch with mathematical modelling of the adjustment cost’, Int. J. Electric. Power Energy Syst., 2014, 58, pp. 918.
    9. 9)
      • 31. He, S., Wu, Q.H., Saunders, J.R.: ‘Group search optimizer: an optimization algorithm inspired by animal searching behavior’, IEEE Trans. Evol. Comput., 2009, 13, (5), pp. 973990.
    10. 10)
      • 2. Anvari-Moghaddam, A., Guerrero, J.M., Vasquez, J.C., et al: ‘Efficient energy management for a grid-tied residential microgrid’, IET Gener. Transm. Distrib., 2017, 11, (11), pp. 27522761.
    11. 11)
      • 28. Iba, K.: ‘Reactive power optimization by genetic algorithm’, IEEE Trans. Power Syst., 1994, 9, (2), pp. 685692.
    12. 12)
      • 32. Elanchezhian, E.B., Subramanian, S., Ganesan, S.: ‘Economic power dispatch with cubic cost models using teaching learning algorithm’, IET Gener. Transm. Distrib., 2014, 8, (7), pp. 11871202.
    13. 13)
      • 1. Mahmoud, M.S., Rahman, M.S.U., Sunni, F.M.A.L.: ‘Review of microgrid architectures—a system of systems perspective’, IET Renew. Power Gener., 2015, 9, (8), pp. 10641078.
    14. 14)
      • 27. Zhang, X., Bao, T., Yu, T.: ‘Deep transfer Q-learning with virtual leader-follower for supply-demand Stackelberg game of smart grid’, Energy, 2017, 133, pp. 348365.
    15. 15)
      • 12. Watkins, J.C.H., Dayan, P.: ‘Q-learning’, Mach. Learn., 1992, 8, (3–4), pp. 279292.
    16. 16)
      • 21. Xu, Y., Li, Z.: ‘Distributed optimal resource management based on the consensus algorithm in a microgrid’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 25842592.
    17. 17)
      • 4. Riffonneau, Y., Bacha, S., Barruel, F., et al: ‘Optimal power flow management for grid connected PV systems with batteries’, IEEE Trans. Sustain. Energy, 2011, 2, (3), pp. 309320.
    18. 18)
      • 22. Yousefi, S., Moghaddam, M.P., Majd, V.J.: ‘Optimal real time pricing in an agent-based retail market using a comprehensive demand response model’, Energy, 2011, 36, (9), pp. 57165727.
    19. 19)
      • 8. Liao, C.C.: ‘Solve environmental economic dispatch of smart microgrid containing distributed generation system – using chaotic quantum genetic algorithm’, Int. J. Electric. Power Energy Syst., 2012, 43, pp. 779787.
    20. 20)
      • 13. Zhang, X., Yu, T., Yang, B., et al: ‘Accelerating bio-inspired optimizer with transfer reinforcement learning for reactive power optimization’, Know.-Based Syst., 2017, 116, pp. 2638.
    21. 21)
      • 36. Duvvuru, N., Swarup, K.S.: ‘A hybrid interior point assisted differential evolution algorithm for economic dispatch’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 541549.
    22. 22)
      • 7. Chen, C., Duan, S., Cai, T., et al: ‘Smart energy management system for optimal microgrid economic operation’, IET Renew. Power Gener., 2011, 5, (3), pp. 258267.
    23. 23)
      • 5. Basu, M., Chowdhury, A.: ‘Cuckoo search algorithm for economic dispatch’, Energy, 2013, 60, pp. 99108.
    24. 24)
      • 34. Wang, S.K., Chiou, J.-P., Liu, C.-W.: ‘Non-smooth/non-convex economic dispatch by a novel hybrid differential evolution algorithm’, IET Gener. Transm. Distrib., 2007, 1, (5), pp. 793803.
    25. 25)
      • 26. Krynicki, K., Houle, M.E., Jaen, J.: ‘An efficient ant colony optimization strategy for the resolution of multi-class queries’, Knowl.-Based Syst., 2016, 105, pp. 96106.
    26. 26)
      • 30. Karaboga, D., Basturk, B.: ‘A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm’, J. Global Optim., 2007, 39, (4), pp. 459471.
    27. 27)
      • 9. Pan, S.J., Yang, Q.: ‘A survey on transfer learning’, IEEE Trans. Knowledge Data Eng., 2010, 22, (10), pp. 13451359.
    28. 28)
      • 24. Er, M.J., Deng, C.: ‘Online tuning of fuzzy inference systems using dynamic fuzzy Q-learning’, IEEE Trans. Syst. Man Cybern. B. Cybern., 2004, 34, (3), pp. 14781489.
    29. 29)
      • 3. Mazzola, S., Astolfi, M., Macchi, E.: ‘A detailed model for the optimal management of a multigood microgrid’, Appl. Energy, 2015, 154, pp. 862873.
    30. 30)
      • 20. Piperagkas, G.S., Anastasiadis, A.G., Hatziargyriou, N.D.: ‘Stochastic PSO-based heat and power dispatch under environmental constraints incorporating CHP and wind power units’, Electr. Power Syst. Res., 2011, 81, (1), pp. 209218.
    31. 31)
      • 33. Bhattacharya, A., Chattopadhyay, P.K.: ‘Application of biogeography-based optimization to solve different optimal power flow problems’, IET Gener. Transm. Distrib., 2011, 5, (1), pp. 7080.
    32. 32)
      • 16. Kamalinia, S, Shahidehpour, M.: ‘Generation expansion planning in wind-thermal power systems’, IET Gener. Transm. Distrib., 2010, 4, (8), pp. 940951.
    33. 33)
      • 35. Duman, S., Sonmez, Y., Güvenç, U., et al: ‘Optimal reactive power dispatch using a gravitational search algorithm’, IET Gener. Transm. Distrib., 2012, 6, (6), pp. 563576.
    34. 34)
      • 19. Karki, S., Kulkarni, M., Mann, M.D., et al: ‘Efficiency improvements through combined heat and power for on-site distributed generation technologies’, Cogener. Distrib. Gener. J., 2007, 22, pp. 1934.
    35. 35)
      • 29. Clerc, M., Kennedy, J.: ‘The particle swarm: explosion, stability, and convergence in a multidimensional complex space’, IEEE Trans. Evol. Comput., 2002, 6, (1), pp. 5873.
    36. 36)
      • 25. Bianchi, R.A.C., Celiberto, L.A., Santos, P.E., et al: ‘Transferring knowledge as heuristics in reinforcement learning: a case-based approach’, Artif. Intell., 2015, 226, pp. 102121.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1983
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1983
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address