Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Demand baseline estimation using similarity-based technique for tropical and wet climates

Demand baseline estimation (BE) is key to the impact assessment of a demand response event in a power system. While many BE techniques exist in literature and are implemented by utilities, these are either inaccurate, or computationally intensive, and only provide point estimates of the demand baseline. This study presents a simple, single-stage, similarity-based BE technique. The authors posit a new definition of similarity that includes weather covariates, and therefore eliminate the need for a subsequent adjustment. A novel growth rate assumption for the demand, combined with an optimised exponential smoothing technique results in a higher accuracy for the proposed BE technique. Additionally, an L-order iterated bootstrap is used to generate confidence intervals to account for prediction uncertainties. The proposed BE technique is tested for the Singaporean National Electricity Market, and is shown to be consistently more accurate than other conventional BE techniques.

References

    1. 1)
      • 2. Wi, Y.-M., Kim, J.-H., Joo, S.-K., et al: ‘Customer baseline load (cbl) calculation using exponential smoothing model with weather adjustment’. IEEE Transmission & Distribution Conf. Exposition: Asia and Pacific, Seoul, South Korea, October 2009, pp. 14.
    2. 2)
      • 5. Zhang, Y., Chen, W., Xu, R., et al: ‘A cluster-based method for calculating baselines for residential loads’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 23682377.
    3. 3)
      • 14. Ilin, A., Raiko, T.: ‘Practical approaches to principal component analysis in the presence of missing values’, J. Mach. Learn. Res., 2010, 11, pp. 19572000.
    4. 4)
      • 3. Coughlin, K., Piette, M.A., Goldman, C., et al: ‘Statistical analysis of baseline load models for non-residential buildings’, Energy Build., 2009, 41, (4), pp. 374381.
    5. 5)
      • 16. Vesterstrom, J., Thomsen, R.: ‘A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems’, Cong. Evol. Comput., 2004, 2, pp. 19801987.
    6. 6)
      • 18. Martin, M.A.: ‘On bootstrap iteration for coverage correction in confidence intervals’, J. Am. Stat. Assoc., 1990, 85, (412), pp. 11051118.
    7. 7)
      • 7. Mathieu, J.L., Price, P.N., Kiliccote, S., et al: ‘Quantifying changes in building electricity use, with application to demand response’, IEEE Trans. Smart Grid, 2011, 2, (3), pp. 507518.
    8. 8)
      • 8. Bode, J.L., Sullivan, M.J., Berghman, D., et al: ‘Incorporating residential ac load control into ancillary service markets: measurement and settlement’, Energy Policy, 2013, 56, (1), pp. 175185.
    9. 9)
      • 21. Mohajeryami, S., Doostan, M., Asadinejad, A., et al: ‘Error analysis of customer baseline load (CBL) calculation methods for residential customers’, IEEE Trans. Ind. Appl., 2017, 53, (1), pp. 514.
    10. 10)
      • 13. Ghalehkhondabi, I., Ardjmand, E., Weckman, G.R., et al: ‘An overview of energy demand forecasting methods published in 2005-2015’, Energy Syst., 2017, 8, (2), pp. 411447.
    11. 11)
      • 1. Kema, D.N.V.: ‘Development of demand response mechanism: baseline consumption methodology-phase 1 results’ (2013).
    12. 12)
      • 19. Ministry of Manpower. Available at http://www.mom.gov.sg/newsroom/ press-releases/2015/0512-ph-2016, 2016.
    13. 13)
      • 9. Addy, N.J., Kiliccote, S., Callaway, D.S., et al: ‘How baseline model implementation choices affect demand response assessments’, J. Solar Energy Eng., 2015, 137, (2), p. 021008.
    14. 14)
      • 20. Meteoblue. Available at https://www.meteoblue.com/en/historyplus, 2017.
    15. 15)
      • 22. Chen, Y., Xu, P., Chu, Y., et al: ‘Short-term electrical load forecasting using the support vector regression (SVR) model to calculate the demand response baseline for office buildings’, Appl. Energy, 2017, 195, pp. 659670.
    16. 16)
      • 17. Panduro, M.A., Brizuela, C.A., Balderas, L.I., et al: ‘A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays’, Prog. Electromagn. Res. B, 2009, 13, pp. 171186.
    17. 17)
      • 10. Park, S., Ryu, S., Choi, Y., et al: ‘A framework for baseline load estimation in demand response: data mining approach’. IEEE Int. Conf. Smart Grid Comm. (SmartGridComm), Venice, Italy, November 2014, pp. 638643.
    18. 18)
      • 4. Newsham, G.R., Birt, B.J., Rowlands, I.H.: ‘A comparison of four methods to evaluate the effect of a utility residential air-conditioner load control program on peak electricity use’, Energy Policy, 2011, 39, (10), pp. 63766389.
    19. 19)
      • 15. Jiang, P., Liu, X., Zhang, J., et al: ‘A framework based on hidden Markov model with adaptive weighting for microcystin forecasting and early-warning’, Decision Support Syst., 2016, 84, pp. 89103.
    20. 20)
      • 6. Hatton, L., Charpentier, P., Matzner-Lber, E.: ‘Statistical estimation of the residential baseline’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 17521759.
    21. 21)
      • 11. Weng, Y., Rajagopal, R.: ‘Probabilistic baseline estimation via Gaussian process’. IEEE Power & Energy Society General Meeting, Denver, CO, USA, July 2015, pp. 15.
    22. 22)
      • 12. Chen, D., Chen, H.W.: ‘Using the Köppen classification to quantify climate variation and change: an example for 1901-2010’, Environ. Dev., 2013, 6, (1), pp. 6979.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1933
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1933
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address