http://iet.metastore.ingenta.com
1887

Demand baseline estimation using similarity-based technique for tropical and wet climates

Demand baseline estimation using similarity-based technique for tropical and wet climates

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Demand baseline estimation (BE) is key to the impact assessment of a demand response event in a power system. While many BE techniques exist in literature and are implemented by utilities, these are either inaccurate, or computationally intensive, and only provide point estimates of the demand baseline. This study presents a simple, single-stage, similarity-based BE technique. The authors posit a new definition of similarity that includes weather covariates, and therefore eliminate the need for a subsequent adjustment. A novel growth rate assumption for the demand, combined with an optimised exponential smoothing technique results in a higher accuracy for the proposed BE technique. Additionally, an L-order iterated bootstrap is used to generate confidence intervals to account for prediction uncertainties. The proposed BE technique is tested for the Singaporean National Electricity Market, and is shown to be consistently more accurate than other conventional BE techniques.

References

    1. 1)
      • D.N.V. Kema .
        1. Kema, D.N.V.: ‘Development of demand response mechanism: baseline consumption methodology-phase 1 results’ (2013).
        .
    2. 2)
      • Y.-M. Wi , J.-H. Kim , S.-K. Joo .
        2. Wi, Y.-M., Kim, J.-H., Joo, S.-K., et al: ‘Customer baseline load (cbl) calculation using exponential smoothing model with weather adjustment’. IEEE Transmission & Distribution Conf. Exposition: Asia and Pacific, Seoul, South Korea, October 2009, pp. 14.
        . IEEE Transmission & Distribution Conf. Exposition: Asia and Pacific , 1 - 4
    3. 3)
      • K. Coughlin , M.A. Piette , C. Goldman .
        3. Coughlin, K., Piette, M.A., Goldman, C., et al: ‘Statistical analysis of baseline load models for non-residential buildings’, Energy Build., 2009, 41, (4), pp. 374381.
        . Energy Build. , 4 , 374 - 381
    4. 4)
      • G.R. Newsham , B.J. Birt , I.H. Rowlands .
        4. Newsham, G.R., Birt, B.J., Rowlands, I.H.: ‘A comparison of four methods to evaluate the effect of a utility residential air-conditioner load control program on peak electricity use’, Energy Policy, 2011, 39, (10), pp. 63766389.
        . Energy Policy , 10 , 6376 - 6389
    5. 5)
      • Y. Zhang , W. Chen , R. Xu .
        5. Zhang, Y., Chen, W., Xu, R., et al: ‘A cluster-based method for calculating baselines for residential loads’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 23682377.
        . IEEE Trans. Smart Grid , 5 , 2368 - 2377
    6. 6)
      • L. Hatton , P. Charpentier , E. Matzner-Lber .
        6. Hatton, L., Charpentier, P., Matzner-Lber, E.: ‘Statistical estimation of the residential baseline’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 17521759.
        . IEEE Trans. Power Syst. , 3 , 1752 - 1759
    7. 7)
      • J.L. Mathieu , P.N. Price , S. Kiliccote .
        7. Mathieu, J.L., Price, P.N., Kiliccote, S., et al: ‘Quantifying changes in building electricity use, with application to demand response’, IEEE Trans. Smart Grid, 2011, 2, (3), pp. 507518.
        . IEEE Trans. Smart Grid , 3 , 507 - 518
    8. 8)
      • J.L. Bode , M.J. Sullivan , D. Berghman .
        8. Bode, J.L., Sullivan, M.J., Berghman, D., et al: ‘Incorporating residential ac load control into ancillary service markets: measurement and settlement’, Energy Policy, 2013, 56, (1), pp. 175185.
        . Energy Policy , 1 , 175 - 185
    9. 9)
      • N.J. Addy , S. Kiliccote , D.S. Callaway .
        9. Addy, N.J., Kiliccote, S., Callaway, D.S., et al: ‘How baseline model implementation choices affect demand response assessments’, J. Solar Energy Eng., 2015, 137, (2), p. 021008.
        . J. Solar Energy Eng. , 2 , 021008
    10. 10)
      • S. Park , S. Ryu , Y. Choi .
        10. Park, S., Ryu, S., Choi, Y., et al: ‘A framework for baseline load estimation in demand response: data mining approach’. IEEE Int. Conf. Smart Grid Comm. (SmartGridComm), Venice, Italy, November 2014, pp. 638643.
        . IEEE Int. Conf. Smart Grid Comm. (SmartGridComm) , 638 - 643
    11. 11)
      • Y. Weng , R. Rajagopal .
        11. Weng, Y., Rajagopal, R.: ‘Probabilistic baseline estimation via Gaussian process’. IEEE Power & Energy Society General Meeting, Denver, CO, USA, July 2015, pp. 15.
        . IEEE Power & Energy Society General Meeting , 1 - 5
    12. 12)
      • D. Chen , H.W. Chen .
        12. Chen, D., Chen, H.W.: ‘Using the Köppen classification to quantify climate variation and change: an example for 1901-2010’, Environ. Dev., 2013, 6, (1), pp. 6979.
        . Environ. Dev. , 1 , 69 - 79
    13. 13)
      • I. Ghalehkhondabi , E. Ardjmand , G.R. Weckman .
        13. Ghalehkhondabi, I., Ardjmand, E., Weckman, G.R., et al: ‘An overview of energy demand forecasting methods published in 2005-2015’, Energy Syst., 2017, 8, (2), pp. 411447.
        . Energy Syst. , 2 , 411 - 447
    14. 14)
      • A. Ilin , T. Raiko .
        14. Ilin, A., Raiko, T.: ‘Practical approaches to principal component analysis in the presence of missing values’, J. Mach. Learn. Res., 2010, 11, pp. 19572000.
        . J. Mach. Learn. Res. , 1957 - 2000
    15. 15)
      • P. Jiang , X. Liu , J. Zhang .
        15. Jiang, P., Liu, X., Zhang, J., et al: ‘A framework based on hidden Markov model with adaptive weighting for microcystin forecasting and early-warning’, Decision Support Syst., 2016, 84, pp. 89103.
        . Decision Support Syst. , 89 - 103
    16. 16)
      • J. Vesterstrom , R. Thomsen .
        16. Vesterstrom, J., Thomsen, R.: ‘A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems’, Cong. Evol. Comput., 2004, 2, pp. 19801987.
        . Cong. Evol. Comput. , 1980 - 1987
    17. 17)
      • M.A. Panduro , C.A. Brizuela , L.I. Balderas .
        17. Panduro, M.A., Brizuela, C.A., Balderas, L.I., et al: ‘A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays’, Prog. Electromagn. Res. B, 2009, 13, pp. 171186.
        . Prog. Electromagn. Res. B , 171 - 186
    18. 18)
      • M.A. Martin .
        18. Martin, M.A.: ‘On bootstrap iteration for coverage correction in confidence intervals’, J. Am. Stat. Assoc., 1990, 85, (412), pp. 11051118.
        . J. Am. Stat. Assoc. , 412 , 1105 - 1118
    19. 19)
      • (2016)
        19. Ministry of Manpower. Available at http://www.mom.gov.sg/newsroom/ press-releases/2015/0512-ph-2016, 2016.
        .
    20. 20)
      • (2017)
        20. Meteoblue. Available at https://www.meteoblue.com/en/historyplus, 2017.
        .
    21. 21)
      • S. Mohajeryami , M. Doostan , A. Asadinejad .
        21. Mohajeryami, S., Doostan, M., Asadinejad, A., et al: ‘Error analysis of customer baseline load (CBL) calculation methods for residential customers’, IEEE Trans. Ind. Appl., 2017, 53, (1), pp. 514.
        . IEEE Trans. Ind. Appl. , 1 , 5 - 14
    22. 22)
      • Y. Chen , P. Xu , Y. Chu .
        22. Chen, Y., Xu, P., Chu, Y., et al: ‘Short-term electrical load forecasting using the support vector regression (SVR) model to calculate the demand response baseline for office buildings’, Appl. Energy, 2017, 195, pp. 659670.
        . Appl. Energy , 659 - 670
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1933
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1933
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address