access icon free Economic impact of investments in weather forecasts for distribution system operators: the Italian case

A larger integration worldwide of renewable energy sources (RESs) in the electricity distribution system is certainly desirable, to reduce CO2 emissions and to contribute to a sustainable development. However, the increasing penetration of renewable energy is a challenge for the system performance, because it affects the power quality and the load management, forecasting, and scheduling. To reduce the impact of intermittent energy sources on network security, it is mandatory to predict with reasonable accuracy the renewable energy variations. The study is mainly focused on solar energy and its integration with distribution network. The technical issues and the economic impact of more accurate weather forecasts are discussed with particular reference to the results of the absolutely first field tests on a new forecast system implemented in the Italian distribution network by the most important Italian distribution system operator. The fundamental role of land weather stations as a new essential component of the distribution network is highlighted.

Inspec keywords: power supply quality; power generation economics; distributed power generation; load management; solar power stations; investment; weather forecasting; sustainable development; carbon compounds; power distribution economics; power generation scheduling; power system security

Other keywords: weather forecasts; intermittent energy sources; solar energy; network security; load management; renewable energy variations; Italian distribution network; distribution system operators; forecast system; renewable energy sources; electricity distribution system; investments; RESs; CO2; economic impact; sustainable development; power quality; carbon dioxide emission reduction; land weather stations

Subjects: Power system control; Solar power stations and photovoltaic power systems; Power supply quality and harmonics; Power system management, operation and economics; Distributed power generation

References

    1. 1)
      • 2. Liserre, M., Sauter, T., Hung, J.Y.: ‘Future energy systems: integrating renewable energy sources into the smart power grid through industrial electronics’, IEEE Ind. Electron. Mag., 2010, 4, (1), pp. 1837.
    2. 2)
      • 18. Bianchini, G., Paoletti, S., Vicino, A., et al: ‘Model estimation of photovoltaic power generation using partial information’, Proc. 4th IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Copenhagen, Denmark, 6–9 October 2013, pp. 15.
    3. 3)
      • 13. ‘EUMETNET official site’. Available at http://www.eumetnet.eu, accessed 15 May 2016.
    4. 4)
      • 30. Pudjianto, D., Djapic, P., Dragovic, J., et al: ‘Grid integration cost of photovoltaic power generation – direct costs analysis related to grid impacts of photovoltaics’. PV Parity Project, 2013.
    5. 5)
      • 25. Osório, G. J., Lujano-Rojas, J. M., Matias, J. C. O., et al: ‘Including forecasting error of renewable generation on the optimal load dispatch’. Proc. IEEE Eindhoven PowerTech, Eindhoven, Netherlands, 29 June–2 July 2015, pp. 16.
    6. 6)
      • 6. Baldi, C., Corti, F., Di Lembo, G., et al: ‘Monitoring and control of active distribution grid’. Proc. CIRED Workshop, Lisbon, Portugal, 29–30 May 2012, pp. 14.
    7. 7)
      • 24. De Felice, M., Petitta, M., Ruti, P.: ‘Short-term predictability of photovoltaic production over Italy’, Renew. Energy, 2015, 80, (C), pp. 197204.
    8. 8)
      • 5. Potter, C.W., Archambault, A., Westrick, K.: ‘Building a smarter grid through better renewable energy information’. Proc. IEEE/PES Power Systems Conf. and Exposition, Seattle, USA, 15–18 March 2009, pp. 15.
    9. 9)
      • 14. World Meteorological Organization: ‘Guide to the global observing system – WMO-No. 488’ (World Meteorological Organization, Geneva, Switzerland, 2008).
    10. 10)
      • 27. Terna S.p.A. and Gruppo Terna: ‘Sintesi del sistema elettrico dell'anno 2015’ (TERNA SpA, Rome, Italy, 2016) (in Italian).
    11. 11)
      • 20. Alet, P.-J., et al: ‘Assessing the need for better forecasting and observability of PV’. White Paper, European Technology & Innovation Platform – PV Working Group on Grid Integration, 2017.
    12. 12)
      • 38. Lonij, V.P.A., Fiot, J., Chen, B., et al: ‘A scalable demand and renewable energy forecasting system for distribution grids’, Proc. IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, July 2016, pp. 15.
    13. 13)
      • 21. Bofinger, S., Heilscher, G.: ‘Solar electricity forecast – approaches and first results’. Proc. 21st European Photovoltaic Solar Energy Conf., Dresden, Germany, 2006, pp. 46.
    14. 14)
      • 37. Desiato, F., Fioravanti, G., Fraschetti, P., et al: ‘Climate indicators for Italy: calculation and dissemination’, Adv. Sci. Res., 2011, 6, pp. 147150.
    15. 15)
      • 19. Sandia Report: ‘DOE/EPRI electricity storage handbook in collaboration with NRECA’ (Sandia National Laboratories, Albuquerque, NM and Livermore, CA, USA, 2015), pp. 1247.
    16. 16)
      • 34. Puglisi, C., Stabile, M., Cabano, M.: ‘Cost saving due to imbalances reduction in the Italian ancillary services market’. Proc. 6th Int. Conf. on Clean Electrical Power (ICCEP), Santa Margherita Ligure, Italy, June 2017, pp. 384391.
    17. 17)
      • 33. Ricerca sul Sistema Energetico – RSE S.p.A.: ‘Energia elettrica, anatomia dei costi – aggiornamento dati al 2015’ (Editrice Alkes, Milan, Italy, 2015) (in Italian).
    18. 18)
      • 23. Sangrody, H., Sarailoo, M., Zhou, N., et al: ‘Weather forecasting error in solar energy forecasting’, IET Renew. Power Gener., 2017, 11, (10), pp. 12741280.
    19. 19)
      • 26. Baleke Ssekulima, E., Bashar Anwar, M., Al Hinai, A., et al: ‘Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: a review’, IET Renew. Power Gener., 2016, 10, (7), pp. 885989.
    20. 20)
      • 35. Gianfreda, A., Parisio, L., Pelagatti, M.: ‘The impact of RES in the Italian day-ahead and balancing markets’, Energy J., 2016, 37, (2), pp. 161184.
    21. 21)
      • 15. Andersson, E.: ‘Statement of guidance for global numerical weather prediction (NWP)’ (ECMWF, Reading, UK, 2016).
    22. 22)
      • 11. ‘ECMWF official site’. Available at http://www.ecmwf.int, accessed 17 May 2016.
    23. 23)
      • 31. Gestore servizi energetici – GSE:‘Rapporto statistico 2015 solare fotovoltaico’ (Gestore servizi energetici – GSE, Rome, Italy, 2016) (in Italian).
    24. 24)
      • 29. PV Parity Project Deliverable: ‘How to support different photovoltaic applications in the achievement of competitiveness and beyond’. (PV Parity Project, 2013).
    25. 25)
      • 39. Minhas, D. M., Khalid, R. R., Frey, G.: ‘Load control for supply-demand balancing under renewable energy forecasting’. Proc. IEEE 2nd Int. Conf. on DC Microgrids (ICDCM), Nuremburg, Germany, June 2017, pp. 365370.
    26. 26)
      • 10. Persson, A.: ‘User guide to ECMWF forecast products’ (ECMWF, Reading, UK, 2015).
    27. 27)
      • 17. World Meteorological Organization: ‘Guide to meteorological instruments and methods of observation – WMO-No. 8’ (World Meteorological Organization, Geneva, Switzerland, 2012).
    28. 28)
      • 16. Montmerle, T.: ‘Statement of guidance for high-resolution numerical weather prediction (NWP)’, (ECMWF, Reading, UK, 2016).
    29. 29)
      • 3. Ellabban, O., Abu-Rub, H., Blaabjerg, F.: ‘Renewable energy resources: current status, future prospects and their enabling technology’, Renew. Sust. Energy Rev., 2014, 39, pp. 748764.
    30. 30)
      • 36. Brusco, G., Burgio, A., Menniti, D., et al: ‘Quantification of forecast error costs of photovoltaic prosumers in Italy’, Energies, 2017, 10, pp. 17541771.
    31. 31)
      • 28. Ziel, F.: ‘Modeling the impact of wind and solar power forecasting errors on intraday electricity prices’. Proc. 14th Int. Conf. on the European Energy Market (EEM), Dresden, Germany, 6–9 June 2017, pp. 15.
    32. 32)
      • 22. Brancucci Martinez-Anido, C., Botor, B., Florita, A.R., et al: ‘The value of day-ahead solar power forecasting improvement’, Sol. Energy, 2016, 129, pp. 192203.
    33. 33)
      • 4. EN 50160/A1: ‘Voltage characteristics of electricity supplied by public distribution systems’, 2015.
    34. 34)
      • 32. Gast, N., Tomozei, D., Le Boudec, J.: ‘Optimal generation and storage scheduling in the presence of renewable forecast uncertainties’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 13281339.
    35. 35)
      • 7. Bianco, G., Noce, C., Sapienza, G.: ‘Enel Distribuzione projects for renewable energy sources integration in distribution grid’, Electr. Power Syst. Res., 2015, 120, pp. 118127.
    36. 36)
      • 9. ‘Ilmeteo.it official site info’. Available at http://www.ilmeteo.it, accessed 29 November 2017.
    37. 37)
      • 1. Ming, Z., Lixin, H., Fam, Y., et al: ‘Research of the problems of renewable energy orderly combined to the grid in smart grid’. Proc. Power and Energy Engineering Conf. (APPEEC 2010), Chengdu, China, 2010.
    38. 38)
      • 12. ‘EUMETSAT official site’. Available at http://www.eumetsat.int, accessed 18 May 2016.
    39. 39)
      • 8. ENEL Distribuzione S.p.A.: ‘Piano di Sviluppo annuale e pluriennale delle Infrastrutture di Enel Distribuzione S.p.A. 2014–2016’ (ENEL S.p.A., Rome, Italy, 2014) (in Italian).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1919
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1919
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading