http://iet.metastore.ingenta.com
1887

Influence of uncertainties and parameter structural dependencies in distribution system state estimation

Influence of uncertainties and parameter structural dependencies in distribution system state estimation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study evaluates a number of uncertain parameters that affect the accuracy of distribution system state estimation (SE), and ranks their importance using an efficient sensitivity analysis technique, Morris screening method. The influence of the uncertain parameters on SE performance is analysed globally and zonally. Furthermore, the dependence structure between the critical variable and SE accuracy is analysed using copula to establish their relationship at different section of the bivariate space. The sensitivity of the critical parameter at different ranges is also studied and ranked using Morris screening methods to present the variation of SE performance when the critical variable is allocated at different sections within the feasible range. Accurate assessment of the importance of various uncertain parameters and the analysis of the dependence structure can inform power system operators which parameters will require the greatest levels of mitigation or increased monitoring accuracy in order to have satisfactory performance of distribution system SE.

References

    1. 1)
      • 1. Abur, A., Exposito, A.G.: ‘Power system state estimation: theory and implementation’ (Marcel Dekker, New York, 2004).
    2. 2)
      • 2. Yih-Fang, H., Werner, S., Jing, H., et al: ‘State estimation in electric power grids: meeting new challenges presented by the requirements of the future grid’, IEEE Signal Proc. Mag., 2012, 29, (5), pp. 3343.
    3. 3)
      • 3. Nanchian, S., Majumdar, A., Pal, B.C.: ‘Three-phase state estimation using hybrid particle swarm optimization’, IEEE Trans. Smart Grid, 2015, 8, (3), pp. 10351045.
    4. 4)
      • 4. Ke, L.: ‘State estimation for power distribution system and measurement impacts’, IEEE Trans. Power Syst., 1996, 11, (2), pp. 911916.
    5. 5)
      • 5. Minguez, R., Conejo, A. J.: ‘State estimation sensitivity analysis’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 10801091.
    6. 6)
      • 6. Macii, D., Barchi, G., Petri, D.: ‘Uncertainty sensitivity analysis of WLS-based grid state estimators’. Proc. Int. Workshop on Applied Measure. for Power System, Aachen, Germany, September 2014, pp. 16.
    7. 7)
      • 7. King, D.M., Perera, B.J.C.: ‘Morris method of sensitivity analysis applied to assess the importance of input variables on urban water supply yield – A case study’, J. Hydr., 2013, 477, pp. 1732.
    8. 8)
      • 8. Hasan, K., Preece, R., Milanovic, J.V.: ‘Priority ranking of critical uncertainties affecting small-disturbance stability using sensitivity analysis techniques’, IEEE Trans. Power Syst., 2017, 32, (4), pp. 26292639. doi: 10.1109/TPWRS.2016.2618347.
    9. 9)
      • 9. Iooss, B., Lemaıtre, P.: ‘A review on global sensitivity analysis methods’ (Springer, Boston, MA, USA, 2015).
    10. 10)
      • 10. Preece, R., Milanovic, J.V.: ‘Assessing the applicability of uncertainty importance measures for power system studies’, IEEE Trans. Power Syst., 2015, 31, (3), pp. 20762084.
    11. 11)
      • 11. Patton, A.J.: ‘Copula-based models for financial time series’, in Andersen, T.G., Davis, R.A., Kreiss, J.P., et al (Eds.) ‘Handbook of financial time series’ (Springer-Verlag, Berlin & Heidelberg, 2007), pp. 767785.
    12. 12)
      • 12. Bina, M.T., Ahmadi, D.: ‘Stochastic modeling for the next day domestic demand response applications’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 28802893.
    13. 13)
      • 13. Woolley, N.C., Milanović, J.V.: ‘Statistical estimation of the source and level of voltage unbalance in distribution networks’, IEEE Trans. Power Deliv., 2012, 27, pp. 14501460.
    14. 14)
      • 14. Morris, M.D.: ‘Factorial sampling plans for preliminary computational experiments’, Technometrics, 1991, 33, (2), pp. 161174.
    15. 15)
      • 15. Campolongo, F., Cariboni, J., Saltelli, A.: ‘An effective screening design for sensitivity analysis of large models’, Environ. Modell. Soft., 2007, 22, (10), pp. 15091518.
    16. 16)
      • 16. Patton, A.J.: ‘On the out-of-sample importance of skewness and asymmetric dependence for asset allocation’, J. Financial. Econometrics, 2004, 2, (1), pp. 130168.
    17. 17)
      • 17. Liao, H., Abdelrahman, S., Milanovic, J.: ‘Zonal mitigation of power quality using FACTS devices for provision of differentiated quality of electricity supply in networks with renewable generation’, IEEE Trans. Power Deliv., 2016, 32, (4), pp. 19751985.
    18. 18)
      • 18. Roytelman, I., Shahidehpour, S.M.: ‘State estimation for electric power distribution systems in quasi real-time conditions’, IEEE Trans. Power Deliv., 1993, 8, (4), pp. 20092015.
    19. 19)
      • 19. Alimardani, A., Therrien, F., Atanackovic, D., et al: ‘Distribution system state estimation based on nonsynchronized smart meters’, IEEE Trans. Smart Grid, 2015, 6, (6), pp. 29192928.
    20. 20)
      • 20. IEC 61869-2:2012: ‘Instrument transformers – Part 2: additional requirements for current transformers’, 2012.
    21. 21)
      • 21. IEC 61000-4-30:2003: ‘Testing and measurement techniques – power quality measurement methods’, 2003.
    22. 22)
      • 22. Asprou, M., Kyriakides, E., Albu, M.: ‘Bad data detection considering the accuracy of instrument transformers’. Proc. IEEE Power and Energy Society General Meeting, Boston, MA, USA, July 2016.
    23. 23)
      • 23. Singh, R., Pal, B.C., Vinter, R.B.: ‘Measurement placement in distribution system state estimation’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 668675.
    24. 24)
      • 24. HiPerDNO/2011/D.2.2.1: ‘Report on Use of Distribution State Estimation Results for Distribution Network Automation Functions’, 2011.
    25. 25)
      • 25. Hesmondhalgh, S.: ‘GB energy demand-2010 and 2025. Initial brattle electricity demand-side model-scope for demand reduction and flexible response’, 2012.
    26. 26)
      • 26. EN 50160:2004: ‘Voltage disturbances standard EN 50160 – voltage characteristics in public distribution systems’, 2004.
    27. 27)
      • 27. Muscas, C., Pilo, F., Pisano, G., et al: ‘Considering the uncertainty on the network parameters in the optimal planning of measurement systems for distribution state estimation’. Proc. Instrumentation and Measurement Technology Conf., Warsaw, Poland, 2007, pp. 16.
    28. 28)
      • 28. IEC 60076-1:2000.: ‘Power transformers – Part 1: general’, 2000.
    29. 29)
      • 29. Jiang, F., Bo, Z.: ‘Modelling of on-load tap-changer transformer with variable impedance and its applications’. Proc. Energy Management and Power Delivery., Singapore, 1998, pp. 491494.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1906
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1906
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address