Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Hierarchical optimal planning approach for plug-in electric vehicle fast charging stations based on temporal-SoC charging demand characterisation

Fast charging stations are critical infrastructures to enable a high penetration level of plug-in electric vehicles (PEVs) into future distribution networks. The fast charging stations need to be carefully planned to meet the PEV charging demand as well as reduce costs. This study addresses this technical challenge and proposes a hierarchical planning solution for both sitting and sizing of PEV fast charging stations based on a temporal-SoC (state-of-charge) characterisation and modelling of PEV fast charging demand. The optimal sitting of fast charging stations is firstly determined to ensure minimising the total number of stations and meeting the PEV fast charging demand considering the constraints of transportation networks and the expected PEV remaining mileage. Then the sizing (number of chargers and waiting spaces) of fast charging station is optimised by the use of M/M/s/N queuing model, so as to maximise the expected profit of the operator. The proposed solution is evaluated through a set of case studies for a range of scenarios, and numerical simulation results have confirmed the effectiveness of the proposed solution.

References

    1. 1)
      • 2. Ismail, M., Bayram, I. S., Abdallah, M., et al: ‘Optimal planning of fast PEV charging facilities’. IEEE Smart Grid and Renewable Energy, Doha, Qatar, March 2015, pp. 16.
    2. 2)
      • 26. Pulling back the veil on EV charging station costs’, http://blog.rmi.org/blog_2014_04_29_pulling_back_the_veil_on_ev_char-ging_station_costs, accessed 27 November 2014.
    3. 3)
      • 1. Mukherjee, J. C., Gupta, A.: ‘Distributed charge scheduling of plug-in electric vehicles using inter-aggregator collaboration’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 331341.
    4. 4)
      • 18. Mu, Y., Wu, J., Jenkinsa, N., et al: ‘A spatial-temporal model for grid impact analysis of plug-in electric vehicles’, Appl. Energy, 2014, 114, (2), pp. 456465.
    5. 5)
      • 20. Hodgson, M. J.: ‘A flow-capturing location-allocation model’, Geogr. Anal., 1990, 22, (3), pp. 270279.
    6. 6)
      • 24. Wu, T., Yang, Q., Bao, Z., et al: ‘Coordinated energy dispatching in microgrid with wind power generation and plug-in electric vehicles’, IEEE Trans. Smart Grid, 2013, 4, (3), pp. 14531463.
    7. 7)
      • 21. Mobile energy resources in grids of electricity’, http://www.transport-research.info/sites/default/files/project/documents/20140203_154622_76425_Deliverable_2.1_Modelling_Electric_Storage_devices_for_Electric_Vehicles.pdf, accessed 04 January 2010.
    8. 8)
      • 19. Simchi-Levi, D., Berman, O.: ‘A heuristic algorithm for the traveling salesman location problem on networks’, Oper. Res., 1988, 36, (3), pp. 478484.
    9. 9)
      • 4. Lam, A. Y. S., Leung, Y. W., Chu, X.: ‘Electric vehicle charging station placement: formulation, complexity, and solutions’, IEEE Trans. Smart Grid, 2017, 5, (6), pp. 28462856.
    10. 10)
      • 23. Haidar, A. M. A., Muttaqi, K. M.: ‘Behavioral characterization of electric vehicle charging loads in a distribution power grid through modeling of battery chargers’, IEEE Trans. Ind. Appl., 2016, 52, (1), pp. 483492.
    11. 11)
      • 8. Zhang, H., Moura, S., Hu, Z., et al: ‘PEV fast-charging station siting and sizing on coupled transportation and power networks’, IEEE Trans. Smart Grid, 2016, PP, (99), p. 1.
    12. 12)
      • 12. Zhang, H., Hu, Z., Xu, Z., et al: ‘Optimal planning of PEV charging station with single output multiple cables charging spots’, IEEE Trans. Smart Grid, 2017, PP, (99), pp. 110.
    13. 13)
      • 14. Kong, C., Bayram, I. S., Devetsikiotis, M.: ‘Revenue optimization frameworks for multi-class PEV charging stations’, IEEE Access, 2015, 3, pp. 21402150.
    14. 14)
      • 10. Pazouki, S., Mohsenzadeh, A., Ardalan, S., et al: ‘Simultaneous planning of PEV charging stations and DGs considering financial, technical, and environmental effects’, Can. J. Electr. Comput. Eng., 2015, 38, (3), pp. 238245.
    15. 15)
      • 6. Luo, C., Huang, Y. F., Gupta, V.: ‘Placement of EV charging stations – balancing benefits among multiple entities’, IEEE Trans. Smart Grid, 2017, 8, (2), pp. 759768.
    16. 16)
      • 25. Schroeder, A., Traber, T.: ‘The economics of fast charging infrastructure for electric vehicles’, Energy Policy, 2012, 43, (4), pp. 136144.
    17. 17)
      • 5. Wang, X., Yuen, C., Hassan, N. U., et al: ‘Electric vehicle charging station placement for urban public bus systems’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (1), pp. 128139.
    18. 18)
      • 16. Feng, L., Ge, S., Liu, H., et al: ‘The planning of charging stations on the urban trunk road’. IEEE PES Innovative Smart Grid Technologies, Tianjin, China, May 2012, pp. 14.
    19. 19)
      • 22. Summary of travel trends: 2009 national household travel survey’, http://nhts.ornl.gov/2009/pub/stt.pdf, accessed in June 2011.
    20. 20)
      • 7. Xu, H., Miao, S., Zhang, C., et al: ‘Optimal placement of charging infrastructures for large-scale integration of pure electric vehicles into grid’, Int. J. Electr. Power Energy Syst., 2013, 53, (1), pp. 159165.
    21. 21)
      • 11. Mohsenzadeh, A., Pang, C., Pazouki, S., et al: ‘Optimal siting and sizing of electric vehicle public charging stations considering smart distribution network reliability’. North American Power Symp., Charlotte, USA, October 2015, pp. 16.
    22. 22)
      • 27. Liu, Z., Zhang, W., Xing, J., et al: ‘Optimal planning of charging station for electric vehicle based on particle swarm optimization’. Innovative Smart Grid Technologies-Asia, Tianjin, China, March 2012, pp. 15.
    23. 23)
      • 9. Zhang, H., Hu, Z., Xu, Z., et al: ‘An integrated planning framework for different types of PEV charging facilities in urban area’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 22732284.
    24. 24)
      • 3. China to build 12,000 NEV chargers by 2020’, http://www.chinadaily.com.cn/business/motoring/2015-10/13/content_22170160.htm, accessed 15 October 2015.
    25. 25)
      • 15. Li, G., Zhang, X.: ‘Modeling of plug-in hybrid electric vehicle charging demand in probabilistic power flow calculations’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 492499.
    26. 26)
      • 17. Sun, S., Yang, Q., Yan, W.: ‘A novel Markov-based temporal-SoC analysis for characterizing PEV charging demand’, IEEE Trans. Ind. Inf., 2017, 14, (1), pp. 156166.
    27. 27)
      • 28. Liu, Z., Wen, F., Ledwich, G.: ‘Optimal planning of electric-vehicle charging stations in distribution systems’, IEEE Trans. Power Deliv., 2012, 28, (1), pp. 102110.
    28. 28)
      • 13. Sadeghi-Barzani, P., Rajabi-Ghahnavieh, A., Kazemi-Karegar, H.: ‘Optimal fast charging station placing and sizing’, Appl. Energy, 2014, 125, (2), pp. 289299.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1894
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1894
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address