http://iet.metastore.ingenta.com
1887

GPU-based parallel real-time volt/var optimisation for distribution network considering distributed generators

GPU-based parallel real-time volt/var optimisation for distribution network considering distributed generators

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Although the wide integration of advanced metering infrastructure on distribution network facilitates the application of volt/var optimisation (VVO) in real-time circumstance, the contradiction between heavy computation load and low solution efficiency is still a big challenge, thus the system scales investigated in the literature are limited. In this study, the full AC real-time VVO is formulated based on particle swarm optimisation (PSO) framework and direct approach (DA) power flow method, where all components, such as distributed generator and on-load tap changer transformer, are formulated and integrated into the iterative DA process. Since both PSO and DA are suitable for parallel implementation, the graphics processing unit (GPU) is introduced for acceleration in order to achieve the possibility for real-time application. All the solution process is executed by GPU with the well-established data structure and thread organisation pattern, resulting in high efficiency by guaranteeing coalesced access within each warp. Case studies are conducted on four systems with sizes ranging from 136-bus to 1760-bus. Solution accuracy and convergence property are validated by the popular open source package Matpower. Based on the results from solution efficiency comparison between CPU sequential, CPU parallel, and GPU parallel programs, the promise of the proposed parallel implementation scheme for practical application is established.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1887
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1887
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address