Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Dynamic optimal power flow model incorporating interval uncertainty applied to distribution network

Dynamic optimal power flow (DOPF) in active distribution networks generally relies on a perfect forecasting of uncertainties such as intermittent distributed generations and time-varying loads, which is generally difficult to achieve in practise. To make DOPF possess the ability to deal with uncertainties, especially for the satisfaction of operating constraints in an uncertain environment, an interval DOPF (I-DOPF) model is derived in this study, by using affine arithmetic and interval Taylor expansion. To solve the I-DOPF problem efficiently, the solving method based on successive linear approximation (SLA) and distributed optimisation strategy is further discussed. The proposed I-DOPF model and its solving method are subsequently applied to a modified IEEE 33-bus network and a real 113-bus distribution network. The simulation results demonstrate that the I-DOPF model has a good performance on boundary constraint satisfaction under uncertainties; the SLA-based solving method can be well integrated with distributed optimisation to meet the practical requirements of data exchange in large-scale active distribution networks.

References

    1. 1)
      • 9. Su, W., Wang, J., Roh, J.: ‘Stochastic energy scheduling in microgrids with intermittent renewable energy resources’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 18761883.
    2. 2)
      • 15. Zhang, C., Chen, H., Liang, Z., et al: ‘Reactive power optimization under interval uncertainty by the linear approximation method and its modified method’, IEEE Trans. Smart Grid, PP, (99), p. 1.
    3. 3)
      • 16. Baran, M.E., Wu, F.F.: ‘Optimal sizing of capacitors placed on a radial distribution system’, IEEE Trans. Power Deliv., 1989, 4, (1), pp. 735743.
    4. 4)
      • 19. Tian, Z., Wu, W., Zhang, B., et al: ‘Mixed-integer second-order cone programming model for VAR optimisation and network reconfiguration in active distribution networks’, IET Gener. Transm. Distrib., 2016, 10, (8), pp. 19381946.
    5. 5)
      • 21. Hill, D.J., Liu, T., Verbic, G.: ‘Smart grids as distributed learning control’. 2012 IEEE Power and Energy Society General Meeting, July 2012, pp. 18.
    6. 6)
      • 5. Jabr, R.A., Pal, B.C.: ‘Intermittent wind generation in optimal power flow dispatching’, IET Gener. Transm. Distrib., 2009, 3, (1), pp. 6674.
    7. 7)
      • 24. Boyd, S., Parikh, N., Chu, E., et al: ‘Distributed optimization and statistical learning via the alternating direction method of multipliers’, Mach. Learn., 2010, 3, (1), pp. 1122.
    8. 8)
      • 11. Xiang, Y., Liu, J., Liu, Y.: ‘Robust energy management of microgrid with uncertain renewable generation and load’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 10341043.
    9. 9)
      • 13. Pirnia, M., Cañizares, C.A., Bhattacharya, K., et al: ‘A novel affine arithmetic method to solve optimal power flow problems with uncertainties’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 27752783.
    10. 10)
      • 20. Wang, Y., Wu, W., Zhang, B., et al: ‘Robust voltage control model for active distribution network considering PVs and loads uncertainties’. 2015 IEEE Power & Energy Society General Meeting, Denver, CO, 2015, pp. 15.
    11. 11)
      • 14. de Figueiredo, L.H., Stolfi, J.: ‘Affine arithmetic: concepts and applications’, Numer. Algorithms, 2004, 37, (1–4), pp. 147158.
    12. 12)
      • 3. Gill, S., Kockar, I., Ault, G.W.: ‘Dynamic optimal power flow for active distribution networks’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 121131.
    13. 13)
      • 10. Soroudi, A., Siano, P., Keane, A.: ‘Optimal DR and ESS scheduling for distribution losses payments minimization under electricity price uncertainty’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 261272.
    14. 14)
      • 8. Eajal, A.A., Shaaban, M.F., Ponnambalam, K., et al: ‘Stochastic centralized dispatch scheme for AC/DC hybrid smart distribution systems’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 10461059.
    15. 15)
      • 22. Simmhan, Y., Kumbhare, A.G., Cao, B., et al: ‘An analysis of security and privacy issues in smart grid software architectures on clouds’. 2011 IEEE Fourth Int. Conf. Cloud Computing, July 2011, pp. 582589.
    16. 16)
      • 7. Morstyn, T., Hredzak, B., Agelidis, V.G.: ‘Dynamic optimal power flow for DC microgrids with distributed battery energy storage systems’. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, 2016, pp. 16.
    17. 17)
      • 12. Vaccaro, A., Canizares, C., Villacci, D.: ‘An affine arithmetic-based methodology for reliable power flow analysis in the presence of data uncertainty’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 624632.
    18. 18)
      • 17. Low, S.H.: ‘Convex relaxation of optimal power flow – part I: formulations and equivalence’, IEEE Trans. Control Netw. Syst., 2014, 1, (1), pp. 1527.
    19. 19)
      • 23. Gan, L., Li, N., Topcu, U., et al: ‘Exact convex relaxation of optimal power flow in radial networks’, IEEE Trans. Autom. Control, 2015, 60, (1), pp. 7287.
    20. 20)
      • 6. Azizipanah-Abarghooee, R., Terzija, V., Golestaneh, F., et al: ‘Multiobjective dynamic optimal power flow considering fuzzy-based smart utilization of mobile electric vehicles’, IEEE Trans. Ind. Inf., 2016, 12, (2), pp. 503514.
    21. 21)
      • 2. Li, Z., Guo, Q., Sun, H., et al: ‘Storage-like devices in load leveling: complementarity constraints and a new and exact relaxation method’, Appl. Energy, 2015, 151, pp. 1322.
    22. 22)
      • 1. Qin, Z., Hou, Y., Lu, E., et al: ‘Solving long time-horizon dynamic optimal power flow of large-scale power grids with direct solution method’, IET Gener. Transm. Distrib., 2014, 8, (5), pp. 895906.
    23. 23)
      • 4. Shi, W., Li, N., Chu, C.C., et al: ‘Real-time energy management in microgrids’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 228238.
    24. 24)
      • 18. Jiang, C., Zhang, Z.G., Zhang, Q.F., et al: ‘A new nonlinear interval programming method for uncertain problems with dependent interval variables’, Eur. J. Oper. Res., 2014, 238, (1), pp. 245253.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1874
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1874
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address