http://iet.metastore.ingenta.com
1887

Dynamic optimal power flow model incorporating interval uncertainty applied to distribution network

Dynamic optimal power flow model incorporating interval uncertainty applied to distribution network

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Dynamic optimal power flow (DOPF) in active distribution networks generally relies on a perfect forecasting of uncertainties such as intermittent distributed generations and time-varying loads, which is generally difficult to achieve in practise. To make DOPF possess the ability to deal with uncertainties, especially for the satisfaction of operating constraints in an uncertain environment, an interval DOPF (I-DOPF) model is derived in this study, by using affine arithmetic and interval Taylor expansion. To solve the I-DOPF problem efficiently, the solving method based on successive linear approximation (SLA) and distributed optimisation strategy is further discussed. The proposed I-DOPF model and its solving method are subsequently applied to a modified IEEE 33-bus network and a real 113-bus distribution network. The simulation results demonstrate that the I-DOPF model has a good performance on boundary constraint satisfaction under uncertainties; the SLA-based solving method can be well integrated with distributed optimisation to meet the practical requirements of data exchange in large-scale active distribution networks.

References

    1. 1)
      • 1. Qin, Z., Hou, Y., Lu, E., et al: ‘Solving long time-horizon dynamic optimal power flow of large-scale power grids with direct solution method’, IET Gener. Transm. Distrib., 2014, 8, (5), pp. 895906.
    2. 2)
      • 2. Li, Z., Guo, Q., Sun, H., et al: ‘Storage-like devices in load leveling: complementarity constraints and a new and exact relaxation method’, Appl. Energy, 2015, 151, pp. 1322.
    3. 3)
      • 3. Gill, S., Kockar, I., Ault, G.W.: ‘Dynamic optimal power flow for active distribution networks’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 121131.
    4. 4)
      • 4. Shi, W., Li, N., Chu, C.C., et al: ‘Real-time energy management in microgrids’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 228238.
    5. 5)
      • 5. Jabr, R.A., Pal, B.C.: ‘Intermittent wind generation in optimal power flow dispatching’, IET Gener. Transm. Distrib., 2009, 3, (1), pp. 6674.
    6. 6)
      • 6. Azizipanah-Abarghooee, R., Terzija, V., Golestaneh, F., et al: ‘Multiobjective dynamic optimal power flow considering fuzzy-based smart utilization of mobile electric vehicles’, IEEE Trans. Ind. Inf., 2016, 12, (2), pp. 503514.
    7. 7)
      • 7. Morstyn, T., Hredzak, B., Agelidis, V.G.: ‘Dynamic optimal power flow for DC microgrids with distributed battery energy storage systems’. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, 2016, pp. 16.
    8. 8)
      • 8. Eajal, A.A., Shaaban, M.F., Ponnambalam, K., et al: ‘Stochastic centralized dispatch scheme for AC/DC hybrid smart distribution systems’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 10461059.
    9. 9)
      • 9. Su, W., Wang, J., Roh, J.: ‘Stochastic energy scheduling in microgrids with intermittent renewable energy resources’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 18761883.
    10. 10)
      • 10. Soroudi, A., Siano, P., Keane, A.: ‘Optimal DR and ESS scheduling for distribution losses payments minimization under electricity price uncertainty’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 261272.
    11. 11)
      • 11. Xiang, Y., Liu, J., Liu, Y.: ‘Robust energy management of microgrid with uncertain renewable generation and load’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 10341043.
    12. 12)
      • 12. Vaccaro, A., Canizares, C., Villacci, D.: ‘An affine arithmetic-based methodology for reliable power flow analysis in the presence of data uncertainty’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 624632.
    13. 13)
      • 13. Pirnia, M., Cañizares, C.A., Bhattacharya, K., et al: ‘A novel affine arithmetic method to solve optimal power flow problems with uncertainties’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 27752783.
    14. 14)
      • 14. de Figueiredo, L.H., Stolfi, J.: ‘Affine arithmetic: concepts and applications’, Numer. Algorithms, 2004, 37, (1–4), pp. 147158.
    15. 15)
      • 15. Zhang, C., Chen, H., Liang, Z., et al: ‘Reactive power optimization under interval uncertainty by the linear approximation method and its modified method’, IEEE Trans. Smart Grid, PP, (99), p. 1.
    16. 16)
      • 16. Baran, M.E., Wu, F.F.: ‘Optimal sizing of capacitors placed on a radial distribution system’, IEEE Trans. Power Deliv., 1989, 4, (1), pp. 735743.
    17. 17)
      • 17. Low, S.H.: ‘Convex relaxation of optimal power flow – part I: formulations and equivalence’, IEEE Trans. Control Netw. Syst., 2014, 1, (1), pp. 1527.
    18. 18)
      • 18. Jiang, C., Zhang, Z.G., Zhang, Q.F., et al: ‘A new nonlinear interval programming method for uncertain problems with dependent interval variables’, Eur. J. Oper. Res., 2014, 238, (1), pp. 245253.
    19. 19)
      • 19. Tian, Z., Wu, W., Zhang, B., et al: ‘Mixed-integer second-order cone programming model for VAR optimisation and network reconfiguration in active distribution networks’, IET Gener. Transm. Distrib., 2016, 10, (8), pp. 19381946.
    20. 20)
      • 20. Wang, Y., Wu, W., Zhang, B., et al: ‘Robust voltage control model for active distribution network considering PVs and loads uncertainties’. 2015 IEEE Power & Energy Society General Meeting, Denver, CO, 2015, pp. 15.
    21. 21)
      • 21. Hill, D.J., Liu, T., Verbic, G.: ‘Smart grids as distributed learning control’. 2012 IEEE Power and Energy Society General Meeting, July 2012, pp. 18.
    22. 22)
      • 22. Simmhan, Y., Kumbhare, A.G., Cao, B., et al: ‘An analysis of security and privacy issues in smart grid software architectures on clouds’. 2011 IEEE Fourth Int. Conf. Cloud Computing, July 2011, pp. 582589.
    23. 23)
      • 23. Gan, L., Li, N., Topcu, U., et al: ‘Exact convex relaxation of optimal power flow in radial networks’, IEEE Trans. Autom. Control, 2015, 60, (1), pp. 7287.
    24. 24)
      • 24. Boyd, S., Parikh, N., Chu, E., et al: ‘Distributed optimization and statistical learning via the alternating direction method of multipliers’, Mach. Learn., 2010, 3, (1), pp. 1122.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1874
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1874
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address