http://iet.metastore.ingenta.com
1887

Non-contact voltage measurement of three-phase overhead transmission line based on electric field inverse calculation

Non-contact voltage measurement of three-phase overhead transmission line based on electric field inverse calculation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

With the development of smart grid, the demand for voltage measurement along the overhead transmission lines is increasing. However, the installation of voltage transformers in the existing lines entails numerous difficulties. This study proposes a new non-contact measurement method by inversely calculating the voltages on AC overhead transmission lines based on the power-frequency electric field measurement data. To improve the calculation accuracy, the 3D model of transmission lines is built, and the relations between the 3D electric fields and voltages are presented. An improved algorithm that intermingles with the particle swarm algorithm and genetic algorithm is developed to ascertain optimal inverse solutions, meanwhile to improve the convergence speed and calculation stability. To further reduce the computational complexity, the constraint relations between the voltages and electric fields are derived, thereby the simplification from three decision variables to one is achieved. Then, some simulation cases with different measurement errors and voltage running states are conducted to show the good robustness and high accuracy of the proposed inversion method. Finally, a three-phase experimental system is built and the actual measured data are used to inversely calculate, which verifies the practicability of the proposed non-contact voltage measurement method.

References

    1. 1)
      • L.M. Surhone , M.T. Timpledon , S.F. Marseken . (2010)
        1. Surhone, L.M., Timpledon, M.T., Marseken, S.F.: ‘Transmission line’ (Betascript Press, Roubaix, France, 2010, 2nd edn.).
        .
    2. 2)
      • B. Chen , L. Du , K. Liu .
        2. Chen, B., Du, L., Liu, K., et al: ‘Measurement error estimation for capacitive voltage transformer by insulation parameters’, Energies, 2017, 10, (3), p. 357.
        . Energies , 3 , 357
    3. 3)
      • D. Topolanek , M. Lehtonen , M.R. Adzman .
        3. Topolanek, D., Lehtonen, M., Adzman, M.R., et al: ‘Earth fault location based on evaluation of voltage sag at secondary side of medium voltage/low voltage transformers’, IET Gener. Transm. Distrib., 2015, 9, (14), pp. 20692077.
        . IET Gener. Transm. Distrib. , 14 , 2069 - 2077
    4. 4)
      • A.M. Farah , M. Afonso , A. Vasconcelos .
        4. Farah, A.M., Afonso, M., Vasconcelos, A.: ‘A finite-element approach for electric field computation at the surface of overhead transmission line conductors’, IEEE Magn. Soc., 2017, PP, (99), pp. 14.
        . IEEE Magn. Soc. , 99 , 1 - 4
    5. 5)
      • A.E. Tzinevrakis , D.K. Tsanakas , E.I. Mimos .
        5. Tzinevrakis, A.E., Tsanakas, D.K., Mimos, E.I.: ‘Electric field analytical formulas for single-circuit power lines with a horizontal arrangement of conductors’, IET Gener. Transm. Distrib., 2009, 3, (6), pp. 509520.
        . IET Gener. Transm. Distrib. , 6 , 509 - 520
    6. 6)
      • Y. Yang , Y. Liu , G. Wu .
        6. Yang, Y., Liu, Y., Wu, G., et al: ‘Calculation method and distribution laws of electric field on surface of overhead transmission line’, High Volt. Eng., 2015, 41, (5), pp. 16441650.
        . High Volt. Eng. , 5 , 1644 - 1650
    7. 7)
      • Z. Tong , Z. Dong , T. Ashton .
        7. Tong, Z., Dong, Z., Ashton, T.: ‘Analysis of electric field influence on buildings under high-voltage transmission lines’, IET Sci. Measurement Technol., 2016, 10, (4), pp. 253258.
        . IET Sci. Measurement Technol. , 4 , 253 - 258
    8. 8)
      • D. Xiao , K. Jiang , Z. Zhang .
        8. Xiao, D., Jiang, K., Zhang, Z., et al: ‘Optimization algorithm for arranging extra and ultra-high voltage transmission lines subjected to the constraints of power frequency electromagnetic environment condition’, Proc. CSEE., 2015, 35, (9), pp. 23332341.
        . Proc. CSEE. , 9 , 2333 - 2341
    9. 9)
      • R.M. Sarmento .
        9. Sarmento, R.M.: ‘Electric and magnetic fields in overhead power transmission lines’, IEEE Latin Am. Trans., 2012, 10, (4), pp. 19091915.
        . IEEE Latin Am. Trans. , 4 , 1909 - 1915
    10. 10)
      • F. Song , H. Lin , S. Lan .
        10. Song, F., Lin, H., Lan, S., et al: ‘Accurate calculation of distribution of power frequency electric field for crossing UHV transmission lines’, Electr. Eng.., 2016, 17, (1), pp. 610.
        . Electr. Eng.. , 1 , 6 - 10
    11. 11)
      • A.Z.E. Dein .
        11. Dein, A.Z.E.: ‘Calculation of the electric field around the tower of the overhead transmission lines’, IEEE Trans. Power Deliv., 2014, 29, (2), pp. 899907.
        . IEEE Trans. Power Deliv. , 2 , 899 - 907
    12. 12)
      • Y. Du , Y. Liao .
        12. Du, Y., Liao, Y.: ‘On-line estimation of transmission line parameters, temperature and sag using PMU measurements’, Electr. Power Syst. Res., 2012, 93, (10), pp. 3945.
        . Electr. Power Syst. Res. , 10 , 39 - 45
    13. 13)
      • C.P. Nicolaou , A.P. Papadakis , P.A. Razis .
        13. Nicolaou, C.P., Papadakis, A.P., Razis, P.A., et al: ‘Measurements and predictions of electric and magnetic fields from power lines’, Electr. Power Syst. Res., 2011, 81, (5), pp. 11071116.
        . Electr. Power Syst. Res. , 5 , 1107 - 1116
    14. 14)
      • R.M. Radwan , A.M. Mahdy , M. Abdel .
        14. Radwan, R.M., Mahdy, A.M., Abdel, M.: ‘Electric field mitigation under extra high voltage power lines’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (1), pp. 5462.
        . IEEE Trans. Dielectr. Electr. Insul. , 1 , 54 - 62
    15. 15)
      • P.F. Mizera , J.F. Fennell .
        15. Mizera, P.F., Fennell, J.F.: ‘Signatures of electric fields from high and low altitude particles distributions’, Geophys. Res. Lett., 2013, 4, (8), pp. 311314.
        . Geophys. Res. Lett. , 8 , 311 - 314
    16. 16)
      • A.E. Tzinevrakis , D.K. Tsanakas , E.I. Mimos .
        16. Tzinevrakis, A.E., Tsanakas, D.K., Mimos, E.I.: ‘Analytical calculation of the electric field produced by single-circuit power lines’, IEEE Trans. Power Deliv., 2008, 23, (3), pp. 14951505.
        . IEEE Trans. Power Deliv. , 3 , 1495 - 1505
    17. 17)
      • W.S. Tan , M.Y. Hassan , H.A. Rahman .
        17. Tan, W.S., Hassan, M.Y., Rahman, H.A., et al: ‘Multi-distributed generation planning using hybrid particle swarm optimisation gravitational search algorithm including voltage rise issue’, IET Gener. Transm. Distrib., 2013, 7, (9), pp. 929942.
        . IET Gener. Transm. Distrib. , 9 , 929 - 942
    18. 18)
      • W.B. Du , W. Ying , G. Yan .
        18. Du, W.B., Ying, W., Yan, G., et al: ‘Heterogeneous strategy particle swarm optimization’, IEEE Trans. Circuits Syst. II Express Briefs, 2017, 64, (4), pp. 467471.
        . IEEE Trans. Circuits Syst. II Express Briefs , 4 , 467 - 471
    19. 19)
      • M.H. Mozaffari , W.S. Lee .
        19. Mozaffari, M.H., Lee, W.S.: ‘Convergent heterogeneous particle swarm optimisation algorithm for multilevel image thresholding segmentation’, IET Image Process., 2017, 11, (8), pp. 605619.
        . IET Image Process. , 8 , 605 - 619
    20. 20)
      • C.F. Juang .
        20. Juang, C.F.: ‘A hybrid of genetic algorithm and particle swarm optimization for recurrent network design’, IEEE Trans. Syst. Man Cybern., 2004, 34, (2), p. 997.
        . IEEE Trans. Syst. Man Cybern. , 2 , 997
    21. 21)
      • K.D. Sharma , A. Chatterjee , A. Rakshit .
        21. Sharma, K.D., Chatterjee, A., Rakshit, A.: ‘A random spatial best PSO-based hybrid strategy for designing adaptive fuzzy controllers for a class of nonlinear systems’, IEEE Trans. Instrum. Meas., 2012, 61, (6), pp. 16051612.
        . IEEE Trans. Instrum. Meas. , 6 , 1605 - 1612
    22. 22)
      • H. Liao , J.V. Milanović .
        22. Liao, H., Milanović, J.V.: ‘Methodology for the analysis of voltage unbalance in networks with single-phase distributed generation’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 550559.
        . IET Gener. Transm. Distrib. , 2 , 550 - 559
    23. 23)
      • A. EI-Naggar , I. Erlich .
        23. EI-Naggar, A., Erlich, I.: ‘Control approach of three-phase grid connected PV inverters for voltage unbalance mitigation in low-voltage distribution grids’, IET Renew. Power Gener., 2017, 10, (10), pp. 15771586.
        . IET Renew. Power Gener. , 10 , 1577 - 1586
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1849
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1849
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address