http://iet.metastore.ingenta.com
1887

Research on modelling and solution of stochastic SCUC under AC power flow constraints

Research on modelling and solution of stochastic SCUC under AC power flow constraints

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

With the more precise day-ahead scheduling strategy for large-scale wind power integration, a model of stochastic security-constrained unit commitment (SCUC) under AC constraints is built and its corresponding solution is given here. A unit commitment model under AC power flow is developed based on network security constraints considering the uncertainty of wind power. In order to analyse this model in time, an ordinal optimisation is presented. The proposed method is verified by the numerical test on a modified IEEE-118 test system. The results show that the risk of voltage over-limit in large-scale wind power integration can be reduced effectively. Meanwhile, the validity of day-ahead generation schedule is enhanced. Furthermore, the computational efficiency of the proposed algorithm is improved significantly compared with that of the traditional one.

References

    1. 1)
      • 1. Shahidehpour, M., Shao, C., Wang, X., et al: ‘Security-constrained unit commitment with flexible uncertainty set for variable wind power’, IEEE Trans. Sustain. Energy, 2017, 8, (3), pp. 12371246.
    2. 2)
      • 2. Nikoobakht, A., Mardaneh, M., Aghaei, J., et al: ‘Flexible power system operation accommodating uncertain wind power generation using transmission topology control: an improved linearised AC SCUC model’, IET Gener. Transm. Distrib., 2017, 11, (1), pp. 142153.
    3. 3)
      • 3. Hu, B., Wu, L.: ‘Robust SCUC considering continuous/discrete uncertainties and quick-start units: a two-stage robust optimization with mixed-integer recourse’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 14071419.
    4. 4)
      • 4. Dai, C., Wu, L., Wu, H.: ‘A multi-band uncertainty set based robust SCUC with spatial and temporal budget constraints’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 49885000.
    5. 5)
      • 5. Overbye, T.J., Cheng, X., Sun, Y.: ‘A comparison of the AC and DC power flow models for LMP calculations’. Proc. 37th Hawaii Int. Conf. System Sciences, Big Island, HI, USA, January 2004, pp. 19.
    6. 6)
      • 6. Purchala, K., Meeus, L., Dommelen, D.V., et al: ‘Usefulness of DC power flow for active power flow analysis’. Power Engineering Society General Meeting, San Francisco, USA, 2005, pp. 454459.
    7. 7)
      • 7. Wu, L., Shahidehpour, M., Li, T.: ‘Stochastic security-constrained unit commitment’, IEEE Trans. Power Syst., 2007, 22, (2), pp. 800811.
    8. 8)
      • 8. Glasserman, P.: ‘Monte Carlo simulation method in financial engineering’ (Springer, New York, 2003).
    9. 9)
      • 9. Al-Awami, A., El-Sharkawi, T., Mohamed, A.: ‘Coordinated trading of wind and thermal energy’, IEEE Trans. Sustain. Energy, 2011, 2, (3), pp. 277287.
    10. 10)
      • 10. Wang, Q., Guan, Y., Wang, J.: ‘A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 206215.
    11. 11)
      • 11. Yang, N., Wang, B., Liu, D., et al: ‘Large-scale wind power stochastic optimization scheduling method considering flexible load peaking’, Trans. China Electrotech. Soc., 2013, 28, (11), pp. 231238.
    12. 12)
      • 12. Li, Z., Wu, W., Zhang, B.: ‘A robust interval economic dispatch method accommodating large-scale wind power generation part one dispatch scheme and mathematical model’, Autom. Electr. Power Syst., 2014, 38, (20), pp. 3339.
    13. 13)
      • 13. Li, Z., Wu, W., Zhang, B.: ‘A robust interval economic dispatch method accommodating large-scale wind power generation part two uncertain set modeling and conservativeness adjustment’, Autom. Electr. Power Syst., 2014, 38, (21), pp. 3238.
    14. 14)
      • 14. Wei, W., Liu, F., Mei, S.: ‘Robust and economical scheduling methodology for power systems part one theoretical foundations’, Autom. Electr. Power Syst., 2013, 37, (17), pp. 3743.
    15. 15)
      • 15. Rather, Z.H., Chen, Z., Thogersen, P., et al: ‘Dynamic reactive power compensation of large-scale wind integrated power system’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 25162526.
    16. 16)
      • 16. Masters, C.L., Mutale, J., Strbac, G., et al: ‘Statistical evaluation of voltages in distribution systems with embedded wind generation’, IEE Proc., Gener. Transm. Distrib., 2000, 147, (4), pp. 207212.
    17. 17)
      • 17. Alamelu, S.M., Devi, R.P.K.: ‘Optimal siting and sizing of UPFC control settings in grid integrated wind energy conversion systems’, Wind Eng., 2010, 34, (4), pp. 421444.
    18. 18)
      • 18. Moghadasi, A., Sarwat, A., Guerrero, J.M.: ‘A comprehensive review of low-voltage-ride-through methods for fixed-speed wind power generators’, Renew. Sustain. Energy Rev., 2016, 55, pp. 823839.
    19. 19)
      • 19. Xie, Y., Guo, R.: ‘Security-constrained unit commitment considering reactive power performance of wind turbine generator’, Autom. Electr. Power Syst., 2012, 36, (14), pp. 113118.
    20. 20)
      • 20. Fu, Y., Shahidehpour, M., Li, Z.: ‘Security-constrained unit commitment with AC constraints’, IEEE Trans. Power Syst., 2005, 20, (3), pp. 15381550.
    21. 21)
      • 21. Shafie-khah, M., Moghaddam, M.P., Sheikh-El-Eslami, M.K., et al: ‘Fast and accurate solution for the SCUC problem in large-scale power systems using adapted binary programming and enhanced dual neural network’, Energy Convers. Manage., 2014, 78, pp. 477485.
    22. 22)
      • 22. Khodaei, A., Shahidehpour, M.: ‘Security-constrained transmission switching with voltage constraints’, Int. J. Electr. Power Energy Syst., 2012, 35, (1), pp. 7482.
    23. 23)
      • 23. Xie, Y.: ‘Research on the unit commitment problem with security constraints and wind power’. PhD thesis, Shanghai Jiao Tong University, 2011.
    24. 24)
      • 24. Ho, Y.C., Screenivas, R.S., Vakili, P.: ‘Ordinal optimization of DEDS’, Discrete Event Dyn. Syst., Theory Appl., 1992, 2, (2), pp. 6188.
    25. 25)
      • 25. Jia, Q.: ‘Research and application of the theory of order optimization’. PhD thesis, Tsing Hua University, 2006.
    26. 26)
      • 26. Guan, X., Song, C., Ho, Y.C., et al: ‘Constrained ordinal optimization – a feasibility model based approach’, Discrete Event Dyn. Syst., 2006, 16, (2), pp. 279299.
    27. 27)
      • 27. Xie M., Z., Felix F, J.: ‘Multiyear transmission expansion planning using ordinal optimization’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 14201428.
    28. 28)
      • 28. Wu, H., Shahidehpour, M.: ‘Stochastic SCUC solution with variable wind energy using constrained ordinal optimization’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 379388.
    29. 29)
      • 29. Wu, Z., Zeng, P., Zhang, X.P.: ‘A solution to the chance-constrained two-stage stochastic program for unit commitment with wind energy integration’, IEEE Trans. Power Syst., 2016, 93, (3), pp. 112.
    30. 30)
      • 30. Roald, L., Misra, S., Krause, T., et al: ‘Corrective control to handle forecast uncertainty: a chance constrained optimal power flow’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 16261637.
    31. 31)
      • 31. Siahkali, H., Vakilian, M.: ‘Stochastic unit commitment of wind farms integrated in power system’, Electr. Power Syst. Res., 2010, 80, (9), pp. 10061017.
    32. 32)
      • 32. Lua, T.W.E., Ho, Y.C.: ‘Universal alignment probabilities and set selection for ordinal optimization’, J. Optim. Theory Appl., 1997, 93, (3), pp. 455489.
    33. 33)
      • 33. Xia, D.: ‘Power system analysis’ (China Electric Power Press, Beijing, China, 2011).
    34. 34)
      • 34. Hu, B., Wu, L., Marwali, M.: ‘On the robust solution to SCUC with load and wind uncertainty correlations’, IEEE Trans. Action. Power Syst., 2014, 26, (6), pp. 29522964.
    35. 35)
      • 35. Nasri, A., Kazempour, S.J., Conejo, A.J., et al: ‘Network-constrained AC unit commitment under uncertainty: a benders’ decomposition approach’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 412422.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1845
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1845
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address