Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Entropy model for optimal coordination in high-voltage dielectric systems

This study describes the use of entropy model for some systems used in the dielectric technique. In this manner, the changes considered in the breakdown voltage are similar to those described by the probability entropy formula. This is particularly the case due to the radius ratios of spherical and cylindrical electrode systems modelled in the high-voltage technique. The breakdown voltage variations in the spherical and cylindrical electrode systems are consistent with the Shannon formulation of Information. These information curves demonstrate how the system should be operated under optimal conditions and these curves exhibit entropy changes due to voltage and field strength.

References

    1. 1)
      • 20. Ochs, W.: ‘Basic properties of the generalized Boltzmann–Gibbs–Shannon entropy’, Rep. Math. Phys., 1976, 9, (2), pp. 135155.
    2. 2)
      • 10. Chakrabarti, C.G., Kajal, D.: ‘Boltzmann–Gibbs entropy: generalization and applications’, J. Biol. Phys., 1997, 23, pp. 163170.
    3. 3)
      • 15. Shahkooh, K.A., Vahedian, A., Saghafi, F., et al: ‘Identification of effective key factors in success of information technology foresight using Shannon's entropy’. Fourth Int. Conf. Computer Sciences and Convergence Information Technology, 2009, pp. 134138.
    4. 4)
      • 16. Weilenmann, M., Kraemer, L., Faist, P., et al: ‘Axiomatic relation between thermodynamic and information theoretic entropies’, Phys. Rev. Lett., 2016, 117, p. 260601.
    5. 5)
      • 9. Van, P.: ‘Unique additive information measures – Boltzmann–Gibbs–Shannon, Fisher and beyond’, Phys. A, Stat. Mech. Appl., 2006, 365–1, pp. 2833. Available at https://doi.org/10.1016/j.physa.2006.01.027.
    6. 6)
      • 7. Christen, T.: ‘Application of the maximum entropy production principle to electrical systems’, J. Phys. D, Appl. Phys., 2006, 39, pp. 44974503.
    7. 7)
      • 11. Ladyman, J., Presnel, S., Short, A.J.: ‘The use of the information-theoretic entropy in thermodynamics’, Stud. Hist. Philos. Sci. B, Stud. Hist. Philos. Mod. Phys., 2008, 39, (2), pp. 315324. Available at https://doi.org/10.1016/j.shpsb.2007.11.004.
    8. 8)
      • 2. Johari, G.P.: ‘Effects of electric field on the entropy, viscosity, relaxation time, and glass-formation’, J. Chem. Phys., 2013, 138, p. 15.
    9. 9)
      • 4. Antonio, Y.M., Périlhon, C., Descombes, G., et al: ‘Thermodynamic modelling of an ejector with compressible flow by a one-dimensional approach’, Entropy, 2012, 14, pp. 599613.
    10. 10)
      • 3. Sisney, L.: ‘Organizational physics the science of growing a business’ (Lulu Press, Morrisville, NC, USA, 2012).
    11. 11)
      • 5. Christen, T.: ‘Modelling electric discharges with entropy production rate principles’, Entropy, 2009, 11, pp. 10421054.
    12. 12)
      • 19. Chen, J., Ye, J. F., Li, Y.: ‘A robust rotary machinery fault diagnosis approach based on entropy fusion and DS theory’. IEEE 13th Int. Conf. Signal Processing, 2016, pp. 14241428.
    13. 13)
      • 6. Laskowski, R., Smyk, A., Rusowicz, A., et al: ‘Determining the optimum inner diameter of condenser tubes based on thermodynamic objective functions and an economic analysis’, Entropy, 2016, 18, p. 444.
    14. 14)
      • 12. Sohrab, S.H.: ‘Boltzmann entropy of thermodynamics versus Shannon entropy of information theory’, Int. J. Mech., 2014, 8, (1), pp. 7384.
    15. 15)
      • 14. Titchener, M.R.: ‘A measure of information’. Proc. DCC 2000, Data Compression Conf., 2000, pp. 353362.
    16. 16)
      • 18. Lazarev, V.L.: ‘Control optimization based on the concepts of entropy potentials’. XX IEEE Int. Conf. Soft Computing and Measurements, 2017, pp. 2527.
    17. 17)
      • 8. Ben-Naim, A.: ‘Entropy, Shannon's measure of information and Boltzmann's H-theorem’, Entropy, 2017, 19, p. 48.
    18. 18)
      • 17. Lazarev, V.L.: ‘Analysis of systems based on entropy and information characteristics’, Tech. Phys., 2010, 55, (2), pp. 159165.
    19. 19)
      • 13. Kuffel, J., Zaengl, W.S., Kuffel, P.: ‘High voltage engineering fundamentals’ (Newnes Press, Oxford, UK, 2000), pp. 209212.
    20. 20)
      • 1. Fröhlich, H.: ‘Theory of dielectrics: dielectric constant and dielectric loss’ (Clarendon Press, Oxford, UK, 1949), pp. 1213.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1824
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1824
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address