http://iet.metastore.ingenta.com
1887

Entropy model for optimal coordination in high-voltage dielectric systems

Entropy model for optimal coordination in high-voltage dielectric systems

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study describes the use of entropy model for some systems used in the dielectric technique. In this manner, the changes considered in the breakdown voltage are similar to those described by the probability entropy formula. This is particularly the case due to the radius ratios of spherical and cylindrical electrode systems modelled in the high-voltage technique. The breakdown voltage variations in the spherical and cylindrical electrode systems are consistent with the Shannon formulation of Information. These information curves demonstrate how the system should be operated under optimal conditions and these curves exhibit entropy changes due to voltage and field strength.

References

    1. 1)
      • H. Fröhlich . (1949)
        1. Fröhlich, H.: ‘Theory of dielectrics: dielectric constant and dielectric loss’ (Clarendon Press, Oxford, UK, 1949), pp. 1213.
        .
    2. 2)
      • G.P. Johari .
        2. Johari, G.P.: ‘Effects of electric field on the entropy, viscosity, relaxation time, and glass-formation’, J. Chem. Phys., 2013, 138, p. 15.
        . J. Chem. Phys. , 15
    3. 3)
      • L. Sisney . (2012)
        3. Sisney, L.: ‘Organizational physics the science of growing a business’ (Lulu Press, Morrisville, NC, USA, 2012).
        .
    4. 4)
      • Y.M. Antonio , C. Périlhon , G. Descombes .
        4. Antonio, Y.M., Périlhon, C., Descombes, G., et al: ‘Thermodynamic modelling of an ejector with compressible flow by a one-dimensional approach’, Entropy, 2012, 14, pp. 599613.
        . Entropy , 599 - 613
    5. 5)
      • T. Christen .
        5. Christen, T.: ‘Modelling electric discharges with entropy production rate principles’, Entropy, 2009, 11, pp. 10421054.
        . Entropy , 1042 - 1054
    6. 6)
      • R. Laskowski , A. Smyk , A. Rusowicz .
        6. Laskowski, R., Smyk, A., Rusowicz, A., et al: ‘Determining the optimum inner diameter of condenser tubes based on thermodynamic objective functions and an economic analysis’, Entropy, 2016, 18, p. 444.
        . Entropy , 444
    7. 7)
      • T. Christen .
        7. Christen, T.: ‘Application of the maximum entropy production principle to electrical systems’, J. Phys. D, Appl. Phys., 2006, 39, pp. 44974503.
        . J. Phys. D, Appl. Phys. , 4497 - 4503
    8. 8)
      • A. Ben-Naim .
        8. Ben-Naim, A.: ‘Entropy, Shannon's measure of information and Boltzmann's H-theorem’, Entropy, 2017, 19, p. 48.
        . Entropy , 48
    9. 9)
      • P. Van .
        9. Van, P.: ‘Unique additive information measures – Boltzmann–Gibbs–Shannon, Fisher and beyond’, Phys. A, Stat. Mech. Appl., 2006, 365–1, pp. 2833. Available at https://doi.org/10.1016/j.physa.2006.01.027.
        . Phys. A, Stat. Mech. Appl. , 28 - 33
    10. 10)
      • C.G. Chakrabarti , D. Kajal .
        10. Chakrabarti, C.G., Kajal, D.: ‘Boltzmann–Gibbs entropy: generalization and applications’, J. Biol. Phys., 1997, 23, pp. 163170.
        . J. Biol. Phys. , 163 - 170
    11. 11)
      • J. Ladyman , S. Presnel , A.J. Short .
        11. Ladyman, J., Presnel, S., Short, A.J.: ‘The use of the information-theoretic entropy in thermodynamics’, Stud. Hist. Philos. Sci. B, Stud. Hist. Philos. Mod. Phys., 2008, 39, (2), pp. 315324. Available at https://doi.org/10.1016/j.shpsb.2007.11.004.
        . Stud. Hist. Philos. Sci. B, Stud. Hist. Philos. Mod. Phys. , 2 , 315 - 324
    12. 12)
      • S.H. Sohrab .
        12. Sohrab, S.H.: ‘Boltzmann entropy of thermodynamics versus Shannon entropy of information theory’, Int. J. Mech., 2014, 8, (1), pp. 7384.
        . Int. J. Mech. , 1 , 73 - 84
    13. 13)
      • J. Kuffel , W.S. Zaengl , P. Kuffel . (2000)
        13. Kuffel, J., Zaengl, W.S., Kuffel, P.: ‘High voltage engineering fundamentals’ (Newnes Press, Oxford, UK, 2000), pp. 209212.
        .
    14. 14)
      • M.R. Titchener .
        14. Titchener, M.R.: ‘A measure of information’. Proc. DCC 2000, Data Compression Conf., 2000, pp. 353362.
        . Proc. DCC 2000, Data Compression Conf. , 353 - 362
    15. 15)
      • K.A. Shahkooh , A. Vahedian , F. Saghafi .
        15. Shahkooh, K.A., Vahedian, A., Saghafi, F., et al: ‘Identification of effective key factors in success of information technology foresight using Shannon's entropy’. Fourth Int. Conf. Computer Sciences and Convergence Information Technology, 2009, pp. 134138.
        . Fourth Int. Conf. Computer Sciences and Convergence Information Technology , 134 - 138
    16. 16)
      • M. Weilenmann , L. Kraemer , P. Faist .
        16. Weilenmann, M., Kraemer, L., Faist, P., et al: ‘Axiomatic relation between thermodynamic and information theoretic entropies’, Phys. Rev. Lett., 2016, 117, p. 260601.
        . Phys. Rev. Lett. , 260601
    17. 17)
      • V.L. Lazarev .
        17. Lazarev, V.L.: ‘Analysis of systems based on entropy and information characteristics’, Tech. Phys., 2010, 55, (2), pp. 159165.
        . Tech. Phys. , 2 , 159 - 165
    18. 18)
      • V.L. Lazarev .
        18. Lazarev, V.L.: ‘Control optimization based on the concepts of entropy potentials’. XX IEEE Int. Conf. Soft Computing and Measurements, 2017, pp. 2527.
        . XX IEEE Int. Conf. Soft Computing and Measurements , 25 - 27
    19. 19)
      • J. Chen , J. F. Ye , Y. Li .
        19. Chen, J., Ye, J. F., Li, Y.: ‘A robust rotary machinery fault diagnosis approach based on entropy fusion and DS theory’. IEEE 13th Int. Conf. Signal Processing, 2016, pp. 14241428.
        . IEEE 13th Int. Conf. Signal Processing , 1424 - 1428
    20. 20)
      • W. Ochs .
        20. Ochs, W.: ‘Basic properties of the generalized Boltzmann–Gibbs–Shannon entropy’, Rep. Math. Phys., 1976, 9, (2), pp. 135155.
        . Rep. Math. Phys. , 2 , 135 - 155
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1824
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1824
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address