access icon free PSO of power cable performance in complex surroundings

Underground cable performance indices such as maximum cable temperature and ampacity are non-continuous functions of the configuration parameters such as depth and width of various trench layers. In this respect, existing traditional gradient-type methods cannot be used to optimise such performance indices. This study presents an efficient methodology for optimising power cable thermal performance with respect to configuration parameters involving cable spacing, depth of burial and size of backfill. The new methodology integrates the powerful features of the finite elements (FEs) technique coupled with the flexibility and effectiveness of the particle swarm optimisation (PSO) algorithm in order to handle various geometrical parameters in the complex surrounding operating environment. The introduced methodology is tested using a commercial FE simulation package used in conjunction with developed PSO code. The integrated methodology can be employed to minimise the maximum cable temperature, minimise installation cost or maximise cable ampacity. Practical applications are presented for 15 kV cables, which demonstrate the usefulness and versatility of the presented methodology. Notable improvements have been achieved by optimising the cable trench configuration parameters. For example, the cable ampacity was maximised, optimising the cable spacing, barrier depth and backfill thermal conductivity, which resulted in an appreciable increase of 4.5%.

Inspec keywords: gradient methods; particle swarm optimisation; underground cables; finite element analysis; power cables

Other keywords: FE technique; cable trench configuration parameter; particle swarm optimisation; PSO; complex surrounding; Saudi Electricity Company; thermal circuit; voltage 15 kV; thermal conductivity; finite element technique; gradient-type method; underground power cable thermal performance; cable spacing

Subjects: Optimisation techniques; Interpolation and function approximation (numerical analysis); Power cables; Linear algebra (numerical analysis); Finite element analysis

References

    1. 1)
      • 30. Malmedal, K., Bates, C., Cain, D.: ‘On the use of the law of times in calculating soil thermal stability and underground cable ampacity’, IEEE Trans. Ind. Appl., 2016, 52, (2), pp. 12151220.
    2. 2)
      • 19. Rasoulpoor, M., Mirzaie, M., Mirimani, S.: ‘Electrical and thermal analysis of single conductor power cable considering the lead sheath effect based on finite element method’, Iran. J. Electr. Electron. Eng., 2016, 12, (1), pp. 7381.
    3. 3)
      • 3. Simmons, D.M.: ‘Cable geometry and the calculation of current-carrying capacity’, AIEE Trans., 1923, 42, pp. 600615.
    4. 4)
      • 26. Kovac, N., Sarajcev, I., Poljak, D.: ‘A numerical-stochastic technique for underground cable system design’, IEE Proc. Gener. Transm. Distrib., 2016, 153, (2), pp. 181186.
    5. 5)
      • 29. Al-Saud, M.S., El-Kady, M.A., Findlay, R.D.: ‘Combined simulation-experimental approach to power cable thermal loading assessment’, IET Proc. Gener., Transm. Distrib., 2008, 2, pp. 1321.
    6. 6)
      • 22. Li, H.J.: ‘Estimation of thermal parameters and prediction of temperature rise in crane power cables’, IEE Proc. Gener. Transm. Distrib., 2004, 151, pp. 355360.
    7. 7)
      • 27. Al-Saud, M.S.: ‘Improved assessment of power cable thermal capability in presence of uncertainties’. Asia-Pacific Power and Energy Engineering Conf. (APPEEC 2012), Shanghai, China, March 2012, pp. 14.
    8. 8)
      • 15. Al-Saud, M.S., El-Kady, M.A., Findlay, R.D.: ‘A new approach to underground cable performance assessment’, Electr. Power Syst. Res., 2007, 78, pp. 907918.
    9. 9)
      • 10. Hwang, C., Yi-Hsuan, J.: ‘Extensions to the finite element method for thermal analysis of underground cable systems’, Electr. Power Syst. Res., 2003, 64, (2), pp. 159164.
    10. 10)
      • 40. Zhipeng, J., Wen, X., Yuan, X.: ‘Applying particle swarm optimization and differential evolution combined with finite element method to optimize cable’. Proc. Second Int. Conf. Computer Science and Electronics Engineering, 2013, pp. 174177.
    11. 11)
      • 5. Baazzim, M.S., Al-Saud, M.S., El-Kady, M.A.: ‘Comparison of finite-element and IEC methods for cable thermal analysis under various operating environments’, Int. J. Electr., Electron. Sci. Eng., 2014, 8, (3), pp. 470475.
    12. 12)
      • 6. Brakelmann, H., Anders, G.: ‘Ampacity reduction factors for cables crossing thermally unfavorable regions’, IEEE Trans. Power Deliv., 2001, 16, pp. 444448.
    13. 13)
      • 8. Foty, M.S., Anders, G.J., Croall, S.C.: ‘Cable environment analysis and the probabilistic approach to cable rating’, IEEE Trans. Power Deliv., 1990, 5, (3), pp. 16281633.
    14. 14)
      • 11. Nahman, J., Tanaskovic, M.: ‘Determination of the current carrying capacity of cables using the finite element method’, Electr. Power Syst. Res., 2002, 61, (2), pp. 109117.
    15. 15)
      • 25. Al-Saud, M.S., El-Kady, M.A., Findlay, R.D.: ‘Optimization of power cable thermal performance using finite-element generated gradient’. Proc. Ninth IASTED Int. Conf. Power and Energy Systems, Clearwater, FL, USA, January 2007, pp. 6368.
    16. 16)
      • 35. Abrol, S., Kaur, M.: ‘A review on particle swarm optimization technique’, Int. J. Adv. Res. Sci. Eng. Technol., 2016, 3, (7), pp. 23972399.
    17. 17)
      • 12. Kim, S.W., Kim, H.H., Hahn, S.C, et al: ‘Coupled finite-element-analytic technique for prediction of temperature rise in power apparatus’, IEEE Trans. Magn., 2002, 38, pp. 921924.
    18. 18)
      • 32. Hwang, C.C.: ‘Calculation of thermal fields of underground cable systems with consideration of structural steels constructed in a duct bank’, IEE Proc. Gener. Transm. Distrib., 1977, 144, pp. 541545.
    19. 19)
      • 2. Garrido, C., Otero, A.F., Cidras, J.: ‘Theoretical model to calculate steady-state and transient ampacity and temperature in buried cables’, IEEE Trans. Power Deliv., 2003, 18, pp. 667678.
    20. 20)
      • 23. Al-Saud, M.S., El-Kady, M.A., Findlay, R.D.: ‘A novel finite-element optimization algorithm with applications to power cable thermal circuit design’. IEEE Power Engineering Society 2007 General Meeting, Tampa, FL, USA, June 2007, pp. 18.
    21. 21)
      • 20. Zarchi, D., Vahidi, B., Moghimi Haji, M.: ‘Optimal configuration of underground cables to maximize total ampacity considering current harmonics’, IET Gener. Transm. Distrib., 2014, 8, (6), pp. 10901097.
    22. 22)
      • 17. Hoerauf, R.: ‘Ampacity application considerations for underground cables’, IEEE Trans. Ind. Appl., 2016, 52, (6), pp. 46384645.
    23. 23)
      • 38. Kareem1, M.H., Jassim, J.M., Al-Hareeb, N.K.: ‘Mathematical modelling of particle swarm optimization algorithm’, Int. J. Adv. Multidiscip. Res. (IJAMR), 2016, 3, (4), pp. 5459.
    24. 24)
      • 1. Neher, J.H., McGrath, M.H.: ‘The calculation of the temperature rise and load capability of cable systems’, AIEE Trans. (Power Appar. Syst.), 1957, 76, pp. 752772.
    25. 25)
      • 34. Alam, S., Dobbie, G., Koh, Y., et al: ‘Research on particle swarm optimization based clustering: a systematic review of literature and techniques’, Swarm Evol. Comput., 2014, 17, pp. 113.
    26. 26)
      • 9. Flatabo, N.: ‘Transient heat conduction problem in power cables solved by the finite element method’, IEEE Trans. Power Appar. Syst., 1973, PAS-92, pp. 5663.
    27. 27)
      • 21. Moutassem, W., Anders, G.J.: ‘Configuration optimization of underground cable for best ampacity’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 20372045.
    28. 28)
      • 14. Nahman, J., Tanaskovic, M.: ‘Evaluation of the loading capacity of a pair of three-phase high voltage cable systems using the finite-element method’, Electr. Power Syst. Res., 2011, 81, pp. 15501555.
    29. 29)
      • 31. Tarasiewicz, E., Kuffel, E., Grzybowski, S.: ‘Calculation of temperature distribution within cable trench backfill and the surrounding soil’, IEEE Trans. Power Appar. Syst., 1985, PAS-104, pp. 19731978.
    30. 30)
      • 24. Al-Saud, M.S.: ‘Assessment of thermal performance of underground current carrying conductors’, IET Proc. Gener., Transm. Distrib., 2011, 5, (6), pp. 630639.
    31. 31)
      • 7. Vaucheret, P., Hartlein, R.A., Black, W.Z.: ‘Ampacity derating factors for cables buried in short segments of conduit’, IEEE Trans. Power Deliv., 2005, 20, pp. 560565.
    32. 32)
      • 39. ANSYS 17.2 Simulation Package, ANSYS, Inc., Southpointe 2600 ANSYS Drive Canonsburg, PA 15317, USA (ansysinfo@ansys.com), 2016.
    33. 33)
      • 33. Rerak, M., Ocłoń, P.: ‘Thermal analysis of underground power cable system’, J. Therm. Sci., 2017, 26, (5), pp. 465471.
    34. 34)
      • 4. IEC 287.: ‘Calculation of the continuous current rating of cables (100% load factor)’ (International Electrotechnical Commission (IEC), 1982, 2nd edn.).
    35. 35)
      • 18. Mitchell, J.K., Abdel-hadi, O.N.: ‘Temperature distribution around buried cables’, IEEE Trans. Power Appar. Syst., 1979, PAS-98, pp. 11581166.
    36. 36)
      • 41. Amrita, M., Jajimoggala, S.: ‘Design optimization by using particle swarm optimization in MATLAB and APDL in ANSYS’, Int. J. Eng. Sci. Technol., 2012, 4, (5), pp. 18761885.
    37. 37)
      • 37. Yi, L.: ‘Study on an improved PSO algorithm and its application for solving function problem’, Int. J. Smart Home, 2016, 10, (3), pp. 5162.
    38. 38)
      • 28. El-Kady, M.A., Chu, F.Y., Radkrishna, H.S., et al: ‘A probabilistic approach to power cable thermal analysis and ampacity evaluation’, IEEE Trans. Power Appar. Syst., 1984, PAS-103, pp. 27352740.
    39. 39)
      • 13. Liang, Y.: ‘Steady-state thermal analysis of power cable systems in ducts using streamline upwind/Petrov–Galerkin finite element method’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (1), pp. 283290.
    40. 40)
      • 42. Assadi, M.K., Zahraee, S.M., Taghdisi, J.: ‘Integration of computer simulation, design of experiments and particle swarm optimization to optimize the production line efficiency’, Int. J. Swarm Intell. Evol. Comput., 2016, 5, (2), p. 4.
    41. 41)
      • 36. Sharma, S.: ‘Particle swarm optimization evaluation, use and applications with electrical power system: review’, Int. J. Electr. Eng. (IIJEE), 2017, 5, (3), pp. 2830.
    42. 42)
      • 16. El-Kady, M.A.: ‘Optimization of power cable and thermal backfill configurations’, IEEE Trans. Power Appar. Syst., 1982, PAS-101, pp. 46814688.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1814
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1814
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading