http://iet.metastore.ingenta.com
1887

Local measurement-based technique for estimating fault location in multi-source DC microgrids

Local measurement-based technique for estimating fault location in multi-source DC microgrids

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Quick fault detection and isolation of faulty section are desired in DC microgrid due to the presence of power electronic converters and low cable impedances. Owing to need of fast disconnection, limited time and data are available for online fault distance estimation. Some of the existing techniques consider source capacitors connected at only one end of the cable; therefore, assume that the fault current is contributed by only one end of the cable. This may not be true in the case of multi-source DC microgrids, where fault current would be supplied from both the ends. Further, existing communication-based techniques require either data synchronisation or fast communication network. To address these issues, this study proposes an online fault location method for multi-source DC microgrid without using communication. The mathematical model of faulted cable section connected to sources at both the ends is derived. This model is used along with the measurements to determine the fault distance. The model consistency with the measurements is quantified using the confidence level based on the residual analysis. A ring-type multi-source DC microgrid system is considered and simulated on real-time digital simulator to demonstrate the effectiveness of the proposed algorithm.

References

    1. 1)
      • 1. Dugan, R., McDermott, T.: ‘Distributed generation’, IEEE Ind. Appl. Mag., 2002, 8, (2), pp. 1925.
    2. 2)
      • 2. Blaabjerg, F., Teodorescu, R., Liserre, M., et al: ‘Overview of control and grid synchronization for distributed power generation systems’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 13981407.
    3. 3)
      • 3. Salomonsson, D., Sannino, A.: ‘Low-voltage DC distribution system for commercial power systems with sensitive electronic loads’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 16201627.
    4. 4)
      • 4. Starke, M., Fangxing, L., Tolbert, L.M., et al: ‘AC vs. DC distribution: maximum power transfer capability’. Proc. IEEE/PES Conversion Delivery Electrical Energy 21st Century, Pittsburgh, PA, USA, July 2008, pp. 16.
    5. 5)
      • 5. Starke, M., Tolbert, L., Ozpineci, B.: ‘AC vs. DC distribution: a loss comparison’. Proc. IEEE/PES Transmission Distribution Conf. Exposition, Pittsburgh, PA, USA, July 2008, pp. 17.
    6. 6)
      • 6. Salomonsson, D., Soder, L., Sannino, A.: ‘Protection of low-voltage DC microgrids’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 10451053.
    7. 7)
      • 7. Yang, J., Fletcher, J.E., OReilly, J.: ‘Short-circuit and ground fault analyses and location in VSC-based DC network cables’, IEEE Trans. Ind. Electron., 2012, 59, (10), pp. 38273837.
    8. 8)
      • 8. Fletcher, S.D.A., Norman, P.J., Galloway, S.J., et al: ‘Optimizing the roles of unit and non-unit protection methods within DC microgrids’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 20792087.
    9. 9)
      • 9. Fletcher, S.D.A., Galloway, S.J., Norman, P.J., et al: ‘High speed differential protection for smart DC distribution system’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 26102617.
    10. 10)
      • 10. Meghwani, A., Srivastava, S., Chakrabarti, S.: ‘A new protection scheme for DC microgrid using line current derivative’. Proc. IEEE/PES General Meeting, Denver, CO, USA, July 2015, pp. 15.
    11. 11)
      • 11. Farhadi, M., Mohammed, O.A.: ‘A new protection scheme for multi-bus DC power systems using an event classification approach’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 28342842.
    12. 12)
      • 12. Mohanty, R., Pradhan, A.K.: ‘Protection of smart DC microgrid with ring configuration using parameter estimation approach’, IEEE Trans. Smart Grid, 2017, pp. 11, DOI: 10.1109/TSG.2017.2708743.
    13. 13)
      • 13. Saleh, K.A., Hooshyar, A., El-Saadany, E.F.: ‘Hybrid passive-overcurrent relay for detection of faults in low-voltage DC grids’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 11291138.
    14. 14)
      • 14. Meghwani, A., Srivastava, S., Chakrabarti, S.: ‘A non-unit protection scheme for DC microgrid based on local measurements’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 172181.
    15. 15)
      • 15. Duan, J., Zhang, K., Cheng, L.: ‘A novel method of fault location for single-phase microgrids’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 915925.
    16. 16)
      • 16. Aki, H.Demand-side resiliency and electricity continuity: experiences and lessons learned in Japan’, 2017, 105, (7), pp. 14431455.
    17. 17)
      • 17. Zadsar, M., Haghifam, M.R., Larimi, S.M.M.: ‘Approach for self-healing resilient operation of active distribution network with microgrid’, 2017, 11, (18), pp. 46334643.
    18. 18)
      • 18. Butler Purry, K.L., Sarma, N.D.R.: ‘Self-healing reconfiguration for restoration of naval shipboard power’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 754762.
    19. 19)
      • 19. Park, J.D., Candelaria, J., Ma, L., et al: ‘DC ring-bus microgrid fault protection and identification of fault location’, IEEE Trans. Power Deliv., 2013, 28, (4), pp. 25742584.
    20. 20)
      • 20. Xu, M.M., Xiao, L.Y., Wang, H.F.: ‘A prony-based method of locating short-circuit fault in DC distribution system’. 2nd IET Renewable Power Generation Conf., Beijing, China, September 2013, pp. 14.
    21. 21)
      • 21. Mohanty, R., Balaji, U.S.M., Pradhan, A.K.: ‘An accurate noniterative fault-location technique for low-voltage DC microgrid’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 475481.
    22. 22)
      • 22. Christopher, E., Sumner, M., Thomas, D., et alFault location in a zonal DC marine power system using active impedance estimation’, IEEE Trans. Appl. Ind., 2013, 49, (2), pp. 860865.
    23. 23)
      • 23. Park, J.: ‘Ground fault detection and location for ungrounded DC traction power systems’, IEEE Trans. Veh. Technol., 2015, 64, (12), pp. 56675676.
    24. 24)
      • 24. Kheirollahi, R., Dehghanpour, E.: ‘Developing a new fault location topology for DC microgrid systems’. 7th Power Electronics, Drive Systems and Technologies Conf. (PEDSTC), Iran, 2016, pp. 15.
    25. 25)
      • 25. Jia, K., Bi, T., Liu, B., et al: ‘Marine power distribution system fault location using a portable injection unit’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 818826.
    26. 26)
      • 26. Nanayakkara, O.M.K.K., Rajapakse, D.A., Wachal, R.: ‘Traveling-wave-based line fault location in star-connected multiterminal HVDC systems’, IEEE Trans. Power Deliv., 2012, 27, (4), pp. 22862294.
    27. 27)
      • 27. Azizi, S., Pasand, M.S., Abedini, M., et al: ‘A traveling wave-based methodology for wide area fault location in multiterminal DC systems’, IEEE Trans. Power Deliv., 2014, 29, (6), pp. 25522560.
    28. 28)
      • 28. Chang, C., Kumar, S., Liu, B., et al: ‘Real-time detection using wavelet transform and neural network of short-circuit faults within a train in DC transit systems’. IEE Proc. Electric Power Applications, 2001, 148, (3), pp. 251256.
    29. 29)
      • 29. Chanda, N., Yong, F.: ‘Ann-based fault classification and location in MVDC ship-board power systems’. North American Power Symp., Boston, 2011, pp. 17.
    30. 30)
      • 30. Dhar, S., Patnaik, R.K., Dash, P.K.: ‘Fault detection and location of photovoltaic based DC microgrid using differential protection strategy’, IEEE Trans. Smart Grid, 2017, 99, pp. 11.
    31. 31)
      • 31. Feng, X., Qi, L., Pan, J.: ‘A novel fault location method and algorithm for DC distribution protection’, IEEE Trans. Ind. Appl., 2017, 53, (3), pp. 18341840.
    32. 32)
      • 32. Xu, Z., Zhang, B., Sirisukprasert, S., et al: ‘Circuit breaker technologies for advanced ship power systems’. 2002 IEEE Power Engineering Society Winter Meeting, Arlington, VA, USA, May 2002, pp. 288293.
    33. 33)
      • 33. Schmerda, R., Krstic, S., Wellner, E., et al: ‘IGCTs vs. IGBTs for circuit breakers in advanced ship electrical systems’. IEEE 2009 Electric Ship Technologies Symp. (ESTS 2009), Baltimore, MD, USA, April 2009, pp. 400405.
    34. 34)
      • 34. Fletcher, S.D.A., Norman, P.J., Galloway, S.J., et al: ‘Determination of protection system requirements for DC unmanned aerial vehicle electrical power network for enhance capability and survivability’, 2011, 1, (4), pp. 137147.
    35. 35)
      • 35. Schweppe, F.C., Masiello, R.D.: ‘A tracking static state estimator’, IEEE Trans. Power Appl. Syst., 1971, 90, (10), pp. 10251033.
    36. 36)
      • 36. Xu, L., Chen, D.: ‘Control and operation of DC microgrid with variable generation and energy storage’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 25132521.
    37. 37)
      • 37. Jover, B.: ‘Choosing the right earthing system, Schneider electric: energy regulations’. Available at http://blog.schneider-electric.com/energy-regulations/2014/01/03/choosing-right-earthing-system/.
    38. 38)
      • 38. DC voltage transducers. Available at: http://www.europowercomponents.com.
    39. 39)
      • 39. DC current transducers. Available at: https://sensing.honeywell.com/.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1801
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1801
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address