http://iet.metastore.ingenta.com
1887

Reliability assessment of a multi-state distribution system with microgrids based on an accelerated Monte-Carlo method

Reliability assessment of a multi-state distribution system with microgrids based on an accelerated Monte-Carlo method

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

For the reliability assessment of a distribution system with microgrids (MGs), considerable computation time has to be cost to ensure convergence of an applied Monte-Carlo method (MCM) to estimating indices of interest, in the context of adopting multi-state models of constituent components. Towards achieving an efficient and accurate reliability assessment as much as possible, multi-state models of distributed generation resources, especially the battery energy storage system, are proposed. Based on the proposed models, effect analysis of a given sampled MG state is conducted in a proposed analytical manner. Moreover, an accelerated MCM nesting the proposed effect analysis methodology is also presented, dedicated to reliability evaluation of a resulting multi-state distribution system from the multi-state constituent components. Case studies on a modified IEEE-RBTS Bus6 F4 system demonstrate the effectiveness of the proposed method, against the plain MCM. In addition, impact of an important parameter, termed total state number of state-of-charge, on the convergence and speed of the proposed method has been fully analysed.

References

    1. 1)
      • R.H. Lasseter .
        1. Lasseter, R.H.: ‘Smart distribution: coupled microgrids’, Proc. IEEE, 2011, 99, (6), pp. 10741082.
        . Proc. IEEE , 6 , 1074 - 1082
    2. 2)
      • C. Marnay , O.C. Bailey .
        2. Marnay, C., Bailey, O.C.: ‘The CERTS microgrid and the future of the macrogrid’. Office of Scientific & Technical Information Technical Reports, Pacific Heights, CA, USA, August 2004.
        . Office of Scientific & Technical Information Technical Reports
    3. 3)
      • A. Nourai , D. Kearns .
        3. Nourai, A., Kearns, D.: ‘Batteries included’, IEEE Power Energy Mag., 2010, 8, (2), pp. 4954.
        . IEEE Power Energy Mag. , 2 , 49 - 54
    4. 4)
      • S.A. Arefifar , A.R.I. Mohamed , T.H.M. El-Fouly .
        4. Arefifar, S.A., Mohamed, A.R.I., El-Fouly, T.H.M.: ‘Supply-adequacy-based optimal construction of microgrids in smart distribution systems’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 14911502.
        . IEEE Trans. Smart Grid , 3 , 1491 - 1502
    5. 5)
      • S.A. Arefifar , A.R.I. Mohamed .
        5. Arefifar, S.A., Mohamed, A.R.I.: ‘DG mix, resources and energy storage units for optimizing microgrid reliability and supply security’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 18351844.
        . IEEE Trans. Smart Grid , 4 , 1835 - 1844
    6. 6)
      • S.A. Arefifar , A.R.I. Mohamed , T.H.M. El-Fouly .
        6. Arefifar, S.A., Mohamed, A.R.I., El-Fouly, T.H.M.: ‘Optimum microgrid design for enhancing reliability and supply-security’, IEEE Trans. Smart Grid, 2013, 4, (3), pp. 15671575.
        . IEEE Trans. Smart Grid , 3 , 1567 - 1575
    7. 7)
      • P. Hu , R. Karki , R. Billinton .
        7. Hu, P., Karki, R., Billinton, R.: ‘Reliability evaluation of generating systems containing wind power and energy storage’, IET Gener. Transm. Distrib., 2009, 3, (8), pp. 783791.
        . IET Gener. Transm. Distrib. , 8 , 783 - 791
    8. 8)
      • F.A. Bhuiyan , A. Yazdani .
        8. Bhuiyan, F.A., Yazdani, A.: ‘Reliability assessment of a wind-power system with integrated energy storage’, IET Renew. Power Gener., 2010, 4, (3), pp. 211220.
        . IET Renew. Power Gener. , 3 , 211 - 220
    9. 9)
      • Y. Chen , Y. Zheng , F. Luo .
        9. Chen, Y., Zheng, Y., Luo, F., et al: ‘Reliability evaluation of distribution systems with mobile energy storage systems’, IET Renew. Power Gener., 2016, 10, (10), pp. 15621569.
        . IET Renew. Power Gener. , 10 , 1562 - 1569
    10. 10)
      • L. Wu , C. Wen , H. Ren .
        10. Wu, L., Wen, C., Ren, H.: ‘Reliability evaluation of the solar power system based on the Markov chain method’, Int. J. Energy Res., 2017, (2), pp. 18.
        . Int. J. Energy Res. , 2 , 1 - 8
    11. 11)
      • T. Adefarati , R.C. Bansal .
        11. Adefarati, T., Bansal, R.C.: ‘Reliability assessment of distribution system with the integration of renewable distributed generation’, Appl. Energy, 2017, 185, (Part 1), pp. 158171.
        . Appl. Energy , 158 - 171
    12. 12)
      • P.M. Costa , M.A. Matos .
        12. Costa, P.M., Matos, M.A.: ‘Reliability of distribution networks with microgrids’, Power Tech, 2005 IEEE Russia Power Tech, St. Petersburg, Russia, June 2005, pp. 17.
        . Power Tech, 2005 IEEE Russia Power Tech , 1 - 7
    13. 13)
      • R. Billinton , Y. Bagen .
        13. Billinton, R., Bagen, , Cui, Y.: ‘Reliability evaluation of small stand-alone wind energy conversion systems using a time series simulation model’, IEE Proc. – Gener., Trans. Distrib., 2003, 150, (1), pp. 96100.
        . IEE Proc. – Gener., Trans. Distrib. , 1 , 96 - 100
    14. 14)
      • Y. Sun , M.H.J. Bollen , G.W. Ault .
        14. Sun, Y., Bollen, M.H.J., Ault, G.W.: ‘Probabilistic reliability evaluation for distribution systems with DER and microgrids’. Int. Conf. Probabilistic Methods Applied to Power Systems IEEE, Stockholm, Sweden, June 2006, pp. 18.
        . Int. Conf. Probabilistic Methods Applied to Power Systems IEEE , 1 - 8
    15. 15)
      • H. Liang , J. Su , S. Liu .
        15. Liang, H., Su, J., Liu, S.: ‘Reliability evaluation of distribution system containing microgrid’. China Int. Conf. Electricity Distribution IEEE, Nanjing, China, March 2010, pp. 17.
        . China Int. Conf. Electricity Distribution IEEE , 1 - 7
    16. 16)
      • S. Wang , Z. Li , Q. Xu .
        16. Wang, S., Li, Z., Xu, Q., et al: ‘Reliability analysis of distributed system with DGs’, 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT 2011), Weihai, Shandong, China, July 2011, pp. 1417.
        . 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT 2011) , 14 - 17
    17. 17)
      • Z. Bie , P. Zhang , G. Li .
        17. Bie, Z., Zhang, P., Li, G., et al: ‘Reliability evaluation of active distribution systems including microgrids’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 23422350.
        . IEEE Trans. Power Syst. , 4 , 2342 - 2350
    18. 18)
      • S. Wang , Z. Li , L. Wu .
        18. Wang, S., Li, Z., Wu, L., et al: ‘New metrics for assessing the reliability and economics of microgrids in distribution system’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 28522861.
        . IEEE Trans. Power Syst. , 3 , 2852 - 2861
    19. 19)
      • A.L.A. Syrri , E.A.M. Ceseña , P. Mancarella .
        19. Syrri, A.L.A., Ceseña, E.A.M., Mancarella, P.: ‘Contribution of microgrids to distribution network reliability’, 2015 IEEE Eindhoven PowerTech, Eindhoven, Netherlands, July 2015, pp. 16.
        . 2015 IEEE Eindhoven PowerTech , 1 - 6
    20. 20)
      • J. Zhang , L. Guan , X. Wang .
        20. Zhang, J., Guan, L., Wang, X.: ‘Impacts of island load shedding and restoration strategies on reliability of microgrid in distribution system’. IEEE Pes Asia-Pacific Power and Energy Engineering Conf. IEEE, Xi'an, China, October 2016, pp. 15941598.
        . IEEE Pes Asia-Pacific Power and Energy Engineering Conf. IEEE , 1594 - 1598
    21. 21)
      • Y. Wang .
        21. Wang, Y.: ‘Risk assessment of stochastic spinning reserve of a wind-integrated multi-state generating system based on a cross-entropy method’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 330338.
        . IET Gener. Transm. Distrib. , 2 , 330 - 338
    22. 22)
      • Y.F. Li , E. Zio .
        22. Li, Y.F., Zio, E.: ‘A multi-state model for the reliability assessment of a distributed generation system via universal generating function’, Rel. Eng. Syst. Safety, 2012, 106, (5), pp. 2836.
        . Rel. Eng. Syst. Safety , 5 , 28 - 36
    23. 23)
      • D. Bazargan , S. Filizadeh , A.M. Gole .
        23. Bazargan, D., Filizadeh, S., Gole, A.M.: ‘Stability analysis of converter-connected battery energy storage systems in the grid’, IEEE Trans. Sustain. Energy, 2014, 5, (4), pp. 12041212.
        . IEEE Trans. Sustain. Energy , 4 , 1204 - 1212
    24. 24)
      • A.G. Bakirtzis .
        24. Bakirtzis, A.G.: ‘A probabilistic method for the evaluation of the reliability of stand alone wind energy systems’, IEEE Trans. Energy Convers., 1992, 7, (1), pp. 99107.
        . IEEE Trans. Energy Convers. , 1 , 99 - 107
    25. 25)
      • S. Ge , T. Li , H. Liu .
        25. Ge, S., Li, T., Liu, H.: ‘Research on low carbon electricity under the probabilistic reliability evaluation’, IET Gener. Transm. Distrib., 2015, 9, (15), pp. 23742381.
        . IET Gener. Transm. Distrib. , 15 , 2374 - 2381
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1794
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1794
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address