http://iet.metastore.ingenta.com
1887

Enhanced heat transfer characteristics and ampacity analysis of a high-voltage overhead transmission line under aeolian vibration

Enhanced heat transfer characteristics and ampacity analysis of a high-voltage overhead transmission line under aeolian vibration

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

High-voltage overhead transmission lines feature both electrical conductivity and mechanical strength properties. Current studies of the aeolian vibration of transmission lines focus primarily on the mechanical properties of these lines but rarely address the lines’ enhanced heat transfer properties, which directly affect transmission line ampacity. In this study, the authors analyse the vibration-enhanced heat transfer characteristics of an energised transmission line undergoing aeolian vibration based on the coupled fluid–solid numerical method. The allowable ampacity is calculated using the heat balance method, which accounts for the heat transfer enhancement effect arising from aeolian vibration. Various parameters, such as the vibration amplitude and the ratio between the natural frequency of the conductor and the frequency of the vortex shedding, are investigated. The results demonstrate that aeolian vibration can effectively improve the heat dissipation effect of the conductor and significantly increase the line ampacity. The maximum heat transfer effect occurs in the lock-in region, in which the allowed ampacity can increase by more than 6%.

References

    1. 1)
      • 1. Jorge, R.S., Hertwich, E.G.: ‘Environmental evaluation of power transmission in Norway’, Appl. Energy, 2013, 101, (4), pp. 513520, doi: 10.1016/j.apenergy.2012.06.004.
    2. 2)
      • 2. Bartos, M., Chester, M., Johnson, N., et al: ‘Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States’, Environ. Res. Lett., 2016, 11, (11), p. 114008, doi: 10.1088/1748-9326/11/11/114008.
    3. 3)
      • 3. IEEE Power Engineering Society: ‘IEEE standard for calculating the current-temperature of bare overhead conductors’. IEEE Standard 738-2012, December 2013.
    4. 4)
      • 4. CIGRE: ‘Thermal behavior of overhead conductors’ (CIGRE WG12 ELECTRA, Paris, France, 1992), no. 144.
    5. 5)
      • 5. Staszewski, L., Rebizant, W.: ‘The differences between IEEE and CIGRE heat balance concepts for line ampacity considerations’. Proc. Int. Symp. Modern Electric Power Systems (MEPS 2010), Poland, September 2010, pp. 14.
    6. 6)
      • 6. Schmidt, N.P.: ‘Comparison between IEEE and CIGRE ampacity standards’, IEEE Trans. Power Deliv., 1999, 14, (4), pp. 15551559, doi: 10.1109/61.796253.
    7. 7)
      • 7. Arroyo, A., Castro, P., Martinez, R., et al: ‘Comparison between IEEE and CIGRE thermal behaviour standards and measured temperature on a 132-kV overhead power line’, Energies, 2015, 8, (12), pp. 1366013671, doi: 10.3390/en81212391.
    8. 8)
      • 8. Varney, T.: ‘Notes on the vibration of transmission-line conductors’, J. AIEE, 1926, 45, (10), pp. 953957, doi: 10.1109/JAIEE.1926.6537302.
    9. 9)
      • 9. Ervik, M., Berg, A., Boelle, A.: ‘Report on aeolian vibration of power overhead lines’, Electra, 2006, 124, pp. 4177.
    10. 10)
      • 10. Ervik, M., et al: ‘Report on aeolian vibration’, Electra, 1989, 124, pp. 4077.
    11. 11)
      • 11. Diana, G., Cheli, F., Fossati, F., et al: ‘Aeolian vibrations of overhead transmission lines: computation in turbulence conditions’, J. Wind Eng. Ind. Aerodyn., 1993, s46-47, (93), pp. 639648, doi: 10.1016 /0167-6105(93)90332-I.
    12. 12)
      • 12. Wiecek, B., De Mey, G., Chatziathanasiou, V., et al: ‘Harmonic analysis of dynamic thermal problems in high voltage overhead transmission lines and buried cables’, Int. J. Elect. Power Energy Syst., 2014, 58, (6), pp. 199205, doi: 10.1016/j.ijepes.2014.01.031.
    13. 13)
      • 13. Baratchi, F., Saghafian, M., Baratchi, B.: ‘Numerical investigation on lock-in condition and convective heat transfer from an elastically supported cylinder in a cross flow’, J. Fluids Eng., 2013, 135, (3), p. 031103, doi: 10.1115/1.4023192.
    14. 14)
      • 14. Oliveira, R.E., Preire, D.G.: ‘Dynamical modelling and analysis of aeolian vibrations of single conductors’, IEEE Trans. Power Deliv., 1994, 9, (3), pp. 16851693, doi: 10.1109/61.311193.
    15. 15)
      • 15. Feng, C.: ‘The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders’. M.A.Sc. thesis, Univ. British Columbia, Vancouver, BC, Canada, 1968.
    16. 16)
      • 16. Griffin, M., Ramberg, S.E.: ‘The vortex-street wakes of vibrating cylinders’, J. Fluid Mech., 1974, 66, (3), pp. 553576, doi: 10.1017/S002211207400036X.
    17. 17)
      • 17. Griffin, M.: ‘Modification of vortex shedding in the synchronization range’, J. Fluids Eng., 1983, 105, (1), p. 123, doi: 10.1115/1.3240933.
    18. 18)
      • 18. Williamson, H.K., Govardhan, R.: ‘Vortex-induced vibrations’, Annu. Rev. Fluid Mech., 2004, 36, (1), pp. 413455, doi: 10.1146/annurev.fluid.36. 050802.122128.
    19. 19)
      • 19. Tsui, Y.T.: ‘Modern developments in aeolian vibration’, Electr. Power Syst. Res., 1988, 15, (3), pp. 173179, doi: 10.1016/0378-7796(88)90021-1.
    20. 20)
      • 20. Wallace, P.G.: ‘The failure of overhead ground wires caused by aeolian vibration’, Electr. Eng., 1952, 71, (1), pp. 7779, doi: 10.1109/EE.1952.6437902.
    21. 21)
      • 21. Zhou, Z.R., Cardou, A., Goudreau, S., et al: ‘Fundamental investigations of electrical conductor fretting fatigue’, Tribol. Int., 1996, 29, (3), pp. 221232, doi: 10.1016/0301-679X (95)00074-E.
    22. 22)
      • 22. ANSYS Fluent Theory Guide, Release 17.0, ANSYS Inc., USA, January 2016.
    23. 23)
      • 23. Cao, F.C., Xiang, H.F.: ‘Numerical calculation of unsteady flow around a cylinder and vortex induced vibration’, J. Hydrodyn., 2001, 16, (1), pp. 111117.
    24. 24)
      • 24. Franke, R., Rodi, W., Schönung, B.: ‘Numerical calculation of laminar vortex-shedding flow past cylinders’, J. Wind Eng. Ind. Aerodyn., 1990, 35, (1), pp. 237257, doi: 10.1016/0167-6105(90)90219-3.
    25. 25)
      • 25. Žkauskas, A.: ‘Heat transfer from tubes in crossflow’, Adv. Heat Transf., 1987, 18, pp. 87159, doi: 10.1016/S0065-2717(08)70118-7.
    26. 26)
      • 26. Knudsen, J.G., Katz, D.L., Street, R.E.: ‘Fluid dynamics and heat transfer’, Phys. Today, 1959, 12, (3), pp. 4044, doi: 10.1063/1.3060727.
    27. 27)
      • 27. Churchill, S.W., Bernstein, M.: ‘A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow’, J. Heat Transfer, 1977, 99, (2), pp. 300306, doi: 10.1115/1.3450685.
    28. 28)
      • 28. Zhou, C.Y., So, R.M.C., Lam, K.: ‘Vortex-induced vibrations of an elastic circular cylinder’, J. Fluids Struct., 1999, 13, (2), pp. 165189, doi: 10.1006/jfls.1998.0195.
    29. 29)
      • 29. Xu, F.: ‘Numerical simulation of fluid-sold coupling vibration and flow control of structures’. Ph.D. dissertation, School of Civil Engineering, Harbin Inst. Technol., June 2009.
    30. 30)
      • 30. Cheng, C.-H., Chen, H.-N., Aung, W.: ‘Experimental study of the effect of transverse oscillation on convection heat transfer from a circular cylinder’, J. Heat Transf., 1977, 119, (3), pp. 474482, doi: 10.1115/1.2824121.
    31. 31)
      • 31. Albizu, I., Fernandez, E., Mazon, A.J., et al: ‘Influence of the conductor temperature error on the overhead line ampacity monitoring systems’, IET Gener. Transm. Distrib., 2011, 5, (4), pp. 440447, doi: 10.1049/iet-gtd.2010.0470.
    32. 32)
      • 32. Kubis, A., Rehtanz, C.: ‘Synchrophasor based thermal overhead line monitoring considering line spans and thermal transients’, IET Gener. Transm. Distrib., 2016, 10, (5), pp. 12321239, doi: 10.1049/iet-gtd.2015.0852.
    33. 33)
      • 33. Shu, J., Guan, R., Wu, L.: ‘Optimal power flow in distribution network considering spatial electro-thermal coupling effect’, IET Gener. Transm. Distrib., 2017, 11, (5), pp. 11621169, doi: 10.1049/iet-gtd.2016.0909.
    34. 34)
      • 34. Tao, W.Q.: ‘Advances in computational heat transfer’ (Science Press, Beijing, 2000).
    35. 35)
      • 35. Li, Y.: ‘Transient simulation of heat balance and risk assessment on overhead transmission line’. Master thesis, College of Resources and Environmental Sciences of Chongqing University, Chongqing, China, 2013.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1764
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1764
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address