Distribution feeder-level day-ahead peak load forecasting methods and comparative study

Distribution feeder-level day-ahead peak load forecasting methods and comparative study

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Day-ahead peak load forecasting is a crucial factor for the electrical utility for daily power planning and distribution. A comparative study of the peak load forecasting at distribution feeder-level circuits with high penetration level of PV generation are investigated. First, two years of private load data from the local utility and two years of public load data from Texas utility are analysed. The correlation analysis is applied to peak load and its driver factors. Next, Bayesian additive regression trees (BART) is employed to do peak load forecasting. Since the BART method takes an amount of time to generate the forecasting, the composite kernel methods based on Gaussian process regression (CKGPR) are designed. Then these methods are compared with multiple linear regression method and the support vector regression method based on the residential area and the business area load data. Thorough comparison results are presented based on five forecasting measurements. The BART has the best forecasting accuracy among all the indices, and the CKGPR also has counterpart forecasting results but with less computation time. Meanwhile, the forecasting accuracy difference between two areas is analysed. Lastly, influential driver factors are summarised.


    1. 1)
      • 1. George, G., Galiana, F.D.: ‘Short-term load forecasting’, Proc. of the IEEE, 1987, 75, (12), pp. 15581573.
    2. 2)
      • 2. Luis, H., Baladron, C., Aguiar, J.M., et al: ‘A survey on electric power demand forecasting: future trends in smart grids, microgrids and smart buildings’, IEEE Commun. Surv. Tutorials, 2014, 16, (3), pp. 14601495.
    3. 3)
      • 3. Preet, S.R., Gao, P.X., Lizotte, D.J.: ‘On hourly home peak load prediction’. Smart Grid Communications (SmartGridComm), 2012 IEEE Third Int. Conf. on. IEEE, Tainan, Taiwan, November 2012.
    4. 4)
      • 4. Son, S.Y., Lee, S.H., Chung, K., et al: ‘Feature selection for daily peak load forecasting using a neuro-fuzzy system’, Multimedia Tools Appl., 2015, 74, (7), pp. 23212336.
    5. 5)
      • 5. Cheng, F., Lavrova, O., Willard, S., et al: ‘Real-time control of utility-scale storage on a distribution feeder’. Proc. of IEEE Energytech, Cleveland, OH, USA, 2013, pp. 15.
    6. 6)
      • 6. ‘Backcasted actual load profiles - historical’,, accessed 27 July 2016.
    7. 7)
      • 7. Chen, T.R, Lehr, J.M., Lavrova, O., et al: ‘Distribution-level peak load prediction based on Bayesian additive regression trees’. IEEE Power and Energy Society General Meeting, Boston, USA, July 2016, pp. 15.
    8. 8)
      • 8. Yang, Z.C.: ‘Modelling and forecasting of electric daily peak load movement based on the elliptic-orbit model with weekly periodic extension: a case study’, IET Gener., Transm. Distrib., 2014, 8, (12), pp. 20462054.
    9. 9)
      • 9. Nagi, J., Yap, K.S., Nagi, F., et al: ‘A computational intelligence scheme for the prediction of the daily peak load’, Appl. Soft Comput., 2011, 11, (8), pp. 47734788.
    10. 10)
      • 10. Moazzami, M., Khodabakhshian, A., Hooshmand, R.: ‘A new hybrid day-ahead peak load forecasting method for Iran's national grid’, Appl. Energy, 2013, 101, pp. 489501.
    11. 11)
      • 11. Ferraty, F., Goia, A., Salinelli, E., et al: ‘Peak-load forecasting using a functional semi-parametric approach’, ‘Topics in nonparametric statistics (Springer Press, New York, 2014), pp. 105114.
    12. 12)
      • 12. Fan, S., Hyndman, R.J.: ‘Short-term load forecasting based on a semi-parametric additive model’, IEEE Trans. Power Syst., 2012, 28, (1), pp. 134141.
    13. 13)
      • 13. Lloyd, J.R.: ‘GEFCom2012 hierarchical load forecasting: gradient boosting machines and Gaussian processes’, Int. J. Forecast., 2014, 30, (2), pp. 369374.
    14. 14)
      • 14. Lin, W.M., Tu, C.S., Yang, R.F., et al: ‘Particle swarm optimisation aided least-square support vector machine for load forecast with spikes’, IET Gener., Trans. Distrib., 2016, 10, (5), pp. 11451153.
    15. 15)
      • 15. National weather service forecast office, NWSFO’,, accessed 27 July 2016.
    16. 16)
      • 16. Gram-Hanssen, K.: ‘Understanding change and continuity in residential energy consumption’, J. Consum. Cult., 2011, 11, (1), pp. 6178.
    17. 17)
      • 17. Higginson, S.L., McKenna, E., Thomson, M.: ‘Can practice make perfect (models)? incorporating social practice theory into quantitative energy demand models’. Behave Energy Conf., Oxford, UK, August 2014.
    18. 18)
      • 18. Stephen, B., Tang, X., Harvey, P.R., et al: ‘Incorporating practice theory in sub-profile models for short term aggregated residential load forecasting’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 15911598.
    19. 19)
      • 19. Trevor, H., Tibshirani, R., Friedman, J.: ‘The elements of statistical learning’ (Springer Press, New York, NY, USA, 2009).
    20. 20)
      • 20. Rech, G., Terasvirta, T., Tschernig, R.: ‘A simple variable selection technique for nonlinear models’, Commun. Stat.Theory Methods, 2001, 30, (6), pp. 12271241.
    21. 21)
      • 21. Zou, H., Hastie, T.: ‘Regularization and variable selection via the elastic net’, J. R. Stat. Soc.: Series B (Stat. Methodol.), 2005, 67, (2), pp. 301320.
    22. 22)
      • 22. Friedman, J., Hastie, T., Tibshirani, R.: ‘Regularization paths for generalized linear models via coordinate descent’, J. Stat. Softw., 2010, 33, (1) p. 1.
    23. 23)
      • 23. Vapnik, V.: ‘Statistical learning theory’ (Wiley press, New York, NY, USA, 1998).
    24. 24)
      • 24. Peng, H., Long, F., Ding, C.: ‘Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (8), pp. 12261238.
    25. 25)
      • 25. Rasmussen, C.E.: ‘Gaussian processes for machine learning’ (MIT press, London, UK, 2006).
    26. 26)
      • 26. Wilson, A., Adams, R.: ‘Gaussian process kernels for pattern discovery and extrapolation’. Int. Conf. on Machine Learning, Atlanta, GA, USA, June 2013, pp. 10671075.
    27. 27)
      • 27. Bishop, C.M.: ‘Pattern recognition and machine Learning’ (Springer press, 2006).
    28. 28)
      • 28. Chipman, H.A., George, E.I., McCulloch, R.E.: ‘BART: Bayesian additive regression trees’, Ann. Appl. Stat., 2010, pp. 266298.
    29. 29)
      • 29. Chipman, H., Ranjan, P., Wang, W.: ‘Sequential design for computer experiments with a flexible Bayesian additive model’, Can. J. Stat., 2012, 40, (4), pp. 663678.
    30. 30)
      • 30. Bleich, J., Kapelner, A., George, E.I., et al: ‘Variable selection for BART: an application to gene regulation’, Ann. Appl. Stat., 2014, 8, (3), pp. 17501781.
    31. 31)
      • 31. Kapelner, A., Bleich, J.: ‘Bartmachine: machine learning with Bayesian additive regression trees’, arXiv preprint arXiv:1312.2171, 2013.

Related content

This is a required field
Please enter a valid email address