http://iet.metastore.ingenta.com
1887

Islanding detection of synchronous distributed generators using data mining complex correlations

Islanding detection of synchronous distributed generators using data mining complex correlations

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a novel method based on data mining for islanding detection of synchronous distributed generators. The method uses a new technique called data mining of code repositories (DAMICORE), which is a powerful data mining tool for detecting patterns and similarities in various kinds of datasets. In addition, a trip logic was developed in this proposal in order to detect islanding and disconnect the distributed generator. One of the most relevant features of the proposed method is its capability to generalise, which reduces the need of big datasets for training purposes. This approach has been tested with islanding, load switching and fault simulations, presenting promising results concerning performance, as well as detection time. General results showed a better performance of the method if compared to traditional anti-islanding protection schemes, such as frequency-based relays.

References

    1. 1)
      • R.C. Dugan , R.F. Arritt , T.E. McDermott .
        1. Dugan, R.C., Arritt, R.F., McDermott, T.E., et al: ‘Distribution system analysis to support the smart grid’. IEEE PES General Meeting, Providence, RI, USA, July 2010, pp. 1–8.
        . IEEE PES General Meeting
    2. 2)
      • L.M. Camarinha-Matos .
        2. Camarinha-Matos, L.M.: ‘Collaborative smart grids – a survey on trends’, Renew. Sust. Energy Rev., 2016, 65, pp. 283294.
        . Renew. Sust. Energy Rev. , 283 - 294
    3. 3)
      • Y. Yan , Y. Qian , H. Sharif .
        3. Yan, Y., Qian, Y., Sharif, H., et al: ‘A survey on smart grid communication infrastructures: motivations, requirements and challenges’, IEEE Commun. Surv. Tutor., 2013, 15, (1), pp. 520.
        . IEEE Commun. Surv. Tutor. , 1 , 5 - 20
    4. 4)
      • N.K. Roy , H.R. Pota .
        4. Roy, N.K., Pota, H.R.: ‘Current status and issues of concern for the integration of distributed generation into electricity networks’, IEEE Syst. J., 2015, 9, pp. 933944.
        . IEEE Syst. J. , 933 - 944
    5. 5)
      • 5. IEEE: ‘IEEE standard for interconnecting distributed resources with electric power systems’, IEEE Std 1547-2003, July 2003, pp. 128.
        . , 1 - 28
    6. 6)
      • R. Walling , N. Miller .
        6. Walling, R., Miller, N.: ‘Distributed generation islanding-implications on power system dynamic performance’. 2002 IEEE Power Engineering Society Summer Meeting, vol. 1, July 2002, pp. 9296.
        . 2002 IEEE Power Engineering Society Summer Meeting , 92 - 96
    7. 7)
      • N. Jenkins , J.B. Ekanayake , G. Strbac . (2010)
        7. Jenkins, N., Ekanayake, J.B., Strbac, G.: ‘Distributed generation’ (Institution of Engineering and Technology, London, UK, 2010).
        .
    8. 8)
      • P. Mahat , Z. Chen , B. Bak-Jensen .
        8. Mahat, P., Chen, Z., Bak-Jensen, B.: ‘Review of islanding detection methods for distributed generation’. Third Int. Conf. Electric Utility Deregulation and Restructuring and Power Technologies (DRPT 2008), April 2008, pp. 27432748.
        . Third Int. Conf. Electric Utility Deregulation and Restructuring and Power Technologies (DRPT 2008) , 2743 - 2748
    9. 9)
      • S. Kar , S. Samantaray .
        9. Kar, S., Samantaray, S.: ‘Data-mining-based intelligent anti-islanding protection relay for distributed generations’, IET Gener., Transm. Distrib., 2014, 8, pp. 629639.
        . IET Gener., Transm. Distrib. , 629 - 639
    10. 10)
      • H. Far , A. Rodolakis , G. Joos .
        10. Far, H., Rodolakis, A., Joos, G.: ‘Synchronous distributed generation islanding protection using intelligent relays’, IEEE Trans. Smart Grid, 2012, 3, pp. 16951703.
        . IEEE Trans. Smart Grid , 1695 - 1703
    11. 11)
      • P. Dash , S. Barik , R. Patnaik .
        11. Dash, P., Barik, S., Patnaik, R.: ‘Detection and classification of islanding and nonislanding events in distributed generation based on fuzzy decision tree’, J. Control, Autom. Electr. Syst., 2014, 25, (6), pp. 699719.
        . J. Control, Autom. Electr. Syst. , 6 , 699 - 719
    12. 12)
      • S. Li , A.J. Rodolakis , K. El-Arroudi .
        12. Li, S., Rodolakis, A.J., El-Arroudi, K., et al: ‘Islanding protection of multiple distributed resources under adverse islanding conditions’, IET Gener., Transm. Distrib., 2016, 10, (8), pp. 19011912.
        . IET Gener., Transm. Distrib. , 8 , 1901 - 1912
    13. 13)
      • M. Kantardzic . (2011)
        13. Kantardzic, M.: ‘Data mining: concepts, models, methods, and algorithms’ (John Wiley & Sons, Hoboken, NJ, USA, 2011, 2nd edn.).
        .
    14. 14)
      • L. Breiman .
        14. Breiman, L.: ‘Random forests’, Mach. Learn., 2001, 45, (1), pp. 532.
        . Mach. Learn. , 1 , 5 - 32
    15. 15)
      • V. Merlin , R. Santos , A. Grilo .
        15. Merlin, V., Santos, R., Grilo, A., et al: ‘A new artificial neural network based method for islanding detection of distributed generators’, Int. J. Electr. Power Energy Syst., 2016, 75, pp. 139151.
        . Int. J. Electr. Power Energy Syst. , 139 - 151
    16. 16)
      • S. Raza , H. Mokhlis , H. Arof .
        16. Raza, S., Mokhlis, H., Arof, H., et al: ‘Minimum-features-based ann-pso approach for islanding detection in distribution system’, IET Renew. Power Gener., 2016, 10, (9), pp. 12551263.
        . IET Renew. Power Gener. , 9 , 1255 - 1263
    17. 17)
      • P.K. Ray , S.R. Mohanty , N. Kishor .
        17. Ray, P.K., Mohanty, S.R., Kishor, N.: ‘Disturbance detection in grid-connected distributed generation system using wavelet and s-transform’, Electr. Power Syst. Res., 2011, 81, pp. 805819.
        . Electr. Power Syst. Res. , 805 - 819
    18. 18)
      • S. Alshareef , S. Talwar , W.G. Morsi .
        18. Alshareef, S., Talwar, S., Morsi, W.G.: ‘A new approach based on wavelet design and machine learning for islanding detection of distributed generation’, IEEE Trans. Smart Grid, 2014, 5, pp. 15751583.
        . IEEE Trans. Smart Grid , 1575 - 1583
    19. 19)
      • S.R. Mohanty , N. Kishor , P.K. Ray .
        19. Mohanty, S.R., Kishor, N., Ray, P.K., et al: ‘Comparative study of advanced signal processing techniques for islanding detection in a hybrid distributed generation system’, IEEE Trans. Sustain. Energy, 2015, 6, pp. 122131.
        . IEEE Trans. Sustain. Energy , 122 - 131
    20. 20)
      • B. Matic-Cuka , M. Kezunovic .
        20. Matic-Cuka, B., Kezunovic, M.: ‘Islanding detection for inverter-based distributed generation using support vector machine method’, IEEE Trans. Smart Grid, 2014, 5, pp. 26762686.
        . IEEE Trans. Smart Grid , 2676 - 2686
    21. 21)
      • B. de Abreu Silva , L.A. Cuminato , A.C. Delbem .
        21. de Abreu Silva, B., Cuminato, L.A., Delbem, A.C., et al: ‘Application-oriented cache memory configuration for energy efficiency in multicores’, IET Comput. Digit. Tech., 2014, 9, (1), pp. 7381.
        . IET Comput. Digit. Tech. , 1 , 73 - 81
    22. 22)
      • L.G.A. Martins , R. Nobre , J.M.P. Cardoso .
        22. Martins, L.G.A., Nobre, R., Cardoso, J.M.P., et al: ‘Clustering-based selection for the exploration of compiler optimization sequences’, ACM Trans. Architec. Code Optim., 2015, 1, p. 22.
        . ACM Trans. Architec. Code Optim. , 22
    23. 23)
      • U. Fayyad , G. Piatetsky-Shapiro , P. Smyth .
        23. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: ‘The KDD process for extracting useful knowledge from volumes of data’, Commun. ACM, 1996, 39, (11), pp. 2734.
        . Commun. ACM , 11 , 27 - 34
    24. 24)
      • N. Saitou , M. Nei .
        24. Saitou, N., Nei, M.: ‘The neighbor-joining method: a new method for reconstructing phylogenetic trees’, Mol. Biol. Evol., 1987, 4, (4), pp. 406425.
        . Mol. Biol. Evol. , 4 , 406 - 425
    25. 25)
      • M.E. Newman .
        25. Newman, M.E.: ‘Fast algorithm for detecting community structure in networks’, Physical Review E, 2004, 69, (6), p. 066133.
        . Physical Review E , 6 , 066133
    26. 26)
      • 26. IEEE recommended practice for excitation system models for power system stability studies’, IEEE Std 421.5-1992, 1992.
        .
    27. 27)
      • I. Report .
        27. Report, I.: ‘Dynamic models for steam and hydro turbines in power system studies’, IEEE Trans. Power Appar. Syst., 1973, PAS-92, pp. 19041915.
        . IEEE Trans. Power Appar. Syst. , 1904 - 1915
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1722
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1722
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address