access icon free Design and implementation of perturbation observer-based robust passivity-based control for VSC-MTDC systems considering offshore wind power integration

Voltage source converter-based multi-terminal high-voltage direct current (VSC-MTDC) systems are starting to be commissioned. However, concentrated integration of large-scale wind power demands stronger robustness against power fluctuation and system disturbances to increase the reliability of the whole system. This study proposes a perturbation observer-based robust passivity-based control (PORPC) for VSC-MTDC systems connected to an offshore wind farm to meet the demands. The aggregated effect of system nonlinearities, parameter uncertainties, unmodelled dynamics and external disturbances includes grid faults and time-varying wind power output is estimated by a linear perturbation observer and fully compensated by a passive controller, thus no accurate VSC-MTDC system model is required. PORPC attempts to regulate DC voltage and reactive power at the rectifier side, as well as active power and reactive power at the inverters side connected to an offshore wind farm. Besides, a DC-link voltage droop controller is introduced so as to provide immediate response to the grid unbalance situation. Moreover, a noticeable robustness against parameter uncertainties can be achieved as no accurate system model is needed. Case studies are carried out to compare the performance of PORPC to other typical approaches. Finally, a hardware-in-the-loop test is undertaken via dSPACE which validate its implementation feasibility.

Inspec keywords: offshore installations; rectifying circuits; invertors; power generation faults; electric current control; reactive power control; robust control; power generation control; wind power plants; voltage control; power grids; observers

Other keywords: hardware-in-the-loop test; linear perturbation observer; offshore wind farm; reliability; grid fault; DC-link voltage droop controller; VSC-MTDC system model; multiterminal high-voltage direct current system; offshore wind power integration; time-varying wind power output estimation; DC voltage regulation; perturbation observer-based robust passivity-based control; dSPACE simulator; rectifier; large-scale wind power demand; voltage source converter; passive controller; renewable energy source; PORPC; reactive power regulation

Subjects: AC-DC power convertors (rectifiers); Control of electric power systems; Power system control; Stability in control theory; Wind power plants; Power and energy control; DC-AC power convertors (invertors); Current control; Voltage control

References

    1. 1)
      • 16. Heier, S., Waddington, R.: ‘Grid integration of wind energy conversion systems’ (Wiley, New York, 2006).
    2. 2)
      • 27. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    3. 3)
      • 24. Liu, J., Wen, J.Y., Yao, W., et al: ‘Solution to short-term frequency response of wind farms by using energy storage systems’, IET Renew. Power Gener., 2016, 10, (5), pp. 669678.
    4. 4)
      • 18. Yang, B., Yu, T., Shu, H. C., et al: ‘Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers’, Appl. Energy, 2018, 210, pp. 711723.
    5. 5)
      • 4. Li, X., Yuan, Z., Fu, J., et al: ‘Nanao multiterminal VSC-HVDC project for integrating large-scale wind generation’. Proc. IEEE Power and Energy Society General Meeting Conf. Expo., National Harbor, MD, USA, July 2014.
    6. 6)
      • 23. Jovcic, D., Ahmed, K.: ‘High-voltage direct-current transmission: converters, systems and DC grids’ (Wiley-Blackwell, Aberdeen, Scotland, 2015, 1st edn.).
    7. 7)
      • 31. Li, W., Belanger, J.: ‘An FPGA-based real-time HIL test bench for full-bridge modular multilevel STATCOM controller’. 2015 17th European Conf. on Power Electronics and Applications (EPE'15 ECCE-Europe), Geneva, Switzerland, September 2015.
    8. 8)
      • 19. Yang, B., Jiang, L., Wang, L., et al: ‘Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine’, Int. J. Electr. Power Energy Syst., 2016, 74, pp. 429436.
    9. 9)
      • 11. Yang, B., Jiang, L., Yao, W., et al: ‘Perturbation estimation based adaptive coordinated passive control for multimachine power systems’, Control Eng. Pract., 2015, 44, pp. 172192.
    10. 10)
      • 20. Haileselassie, T.M., Uhlen, K.: ‘Impact of DC line voltage drops on power flow of MTDC using droop control’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 14411449.
    11. 11)
      • 22. Yazdani, A., Iravani, R.: ‘Dynamic model and control of the NPC-based back-to-back HVDC system’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 414424.
    12. 12)
      • 21. Wu, F.J., Sun, D.Y., Duan, J.D.: ‘Diagnosis of single-phase open-line fault in three-phase PWM rectifier with LCL filter’, IET Gener. Transm. Distrib., 2016, 10, (6), pp. 14101421.
    13. 13)
      • 14. Yang, B., Jiang, L, Yao, W., et al: ‘Perturbation observer based adaptive passive control for damping improvement of multi-terminal voltage source converter-based high voltage direct current systems’, Trans. Inst. Meas. Control, 2017, 39, (9), pp. 14091420.
    14. 14)
      • 8. Chaudhuri, N., Chaudhuri, B.: ‘Adaptive droop control for effective power sharing in multi-terminal DC (MTDC) grids’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 2129.
    15. 15)
      • 13. Chen, J., Jiang, L., Yao, W., et al: ‘Perturbation estimation based nonlinear adaptive control of a full-rated converter wind turbine for fault ride-through capability enhancement’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 27332743.
    16. 16)
      • 12. Harnefors, L., Yepes, A., Vidal, A., et al: ‘Passivity-based controller design of grid-connected VSCs for prevention of electrical resonance instability’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 702710.
    17. 17)
      • 26. Wang, P., Billinton, R.: ‘Reliability benefit analysis of adding WTG in a distribution system’, IEEE Trans. Energy Convers., 2001, 16, (2), pp. 134139.
    18. 18)
      • 25. Yao, W., Jiang, L., Wen, J.Y., et al: ‘Wide-area damping controller of FACTS devices for inter-area oscillations considering communication time delays’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 318329.
    19. 19)
      • 15. Torres-Olguin, R.E., Molinas, M., Undeland, T.: ‘Offshore wind farm grid integration by VSC technology with LCC-based HVDC transmission’, IEEE Trans. Sustain. Energy, 2012, 3, (4), pp. 899907.
    20. 20)
      • 17. Liao, S.W., Yao, W., Han, X.N., et al: ‘Chronological operation simulation framework for regional power system under high penetration of renewable energy using meteorological data’, Appl. Energy, 2017, 203, pp. 816828.
    21. 21)
      • 1. Xu, L., Yao, L.: ‘DC voltage control and power dispatch of a multi-terminal HVDC system for integrating large offshore wind farms’, IET Renew. Power Gener., 2011, 5, (3), pp. 223233.
    22. 22)
      • 10. Stamatiou, G., Bongiorno, M.: ‘Power-dependent droop-based control strategy for multi-terminal HVDC transmission grids’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 383391.
    23. 23)
      • 30. Yogarathinam, B., Kaur, J., Chaudhuri, N.: ‘Impact of inertia and effective short circuit ratio on the control of frequency in weak grids interfacing LCC-HVDC and DFIG-based wind farms’, IEEE Trans. Power Deliv., 2017, 32, (4), pp. 20402051.
    24. 24)
      • 2. Shen, Y., Yao, W., Wen, J.Y., et al: ‘Adaptive supplementary damping control of VSC-HVDC for interarea oscillation using GrHDP’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 17771789.
    25. 25)
      • 9. Zhao, X., Li, K.: ‘Adaptive backstepping droop controller design for multi-terminal high-voltage direct current systems’, IET Gener. Transm. Distrib., 2015, 9, (10), pp. 975983.
    26. 26)
      • 5. Li, S., Haskew, T.A., Xu, L.: ‘Control of HVDC light system using conventional and direct current vector control approaches’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 31063118.
    27. 27)
      • 7. Moharana, A., Dash, P.K.: ‘Input-output linearization and robust sliding-mode controller for the VSC-HVDC transmission link’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 19521961.
    28. 28)
      • 29. Yao, W., Jiang, L., Wen, J.Y., et al: ‘Wide-area damping controller for power system inter-area oscillations: a networked predictive control approach’, IEEE Trans. Control Syst. Tech., 2015, 23, (1), pp. 2736.
    29. 29)
      • 6. Ruan, S.Y., Li, G.J., Jiao, X.H., et al: ‘Adaptive control design for VSC-HVDC systems based on backstepping method’, Elect. Power Syst. Res., 2007, 77, pp. 559565.
    30. 30)
      • 28. Babazadeh, D., Muthukrishnan, A., Mitra, P., et al: ‘Real-time estimation of AC-grid short circuit capacity for HVDC control application’, IET Gener. Transm. Distrib., 2017, 11, (4), pp. 838846.
    31. 31)
      • 3. Flourentzou, N., Agelidis, V.G., Demetriades, G.D.: ‘VSC-based HVDC power transmission systems: an overview’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 592602.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1693
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1693
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading