http://iet.metastore.ingenta.com
1887

Multi-nodal short-term energy forecasting using smart meter data

Multi-nodal short-term energy forecasting using smart meter data

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper deals with the short-term forecasting of electrical energy demands at the local level, incorporating advanced metering infrastructure (AMI), or ‘smart meter’ data. It provides a study of the effects of aggregation on electrical energy demand modelling and multi-nodal demand forecasting. This paper then presents a detailed assessment of the variables which affect electrical energy demand, and how these effects vary at different levels of demand aggregation. Finally, this study outlines an approach for incorporating AMI data in short-term forecasting at the local level, in order to improve forecasting accuracy for applications in distributed energy systems, microgrids and transactive energy. The analysis presented in this study is carried out using large AMI data sets comprised of recorded demand and local weather data from test sites in two European countries.

References

    1. 1)
      • 1. Gross, G., Galiana, F.D.: ‘Short-term load forecasting’, Proc. IEEE, 1987, 75, (12), pp. 15581573.
    2. 2)
      • 2. Hong, T.: ‘Short term electric load forecasting’. PhD thesis, North Carolina State University, 2010.
    3. 3)
      • 3. Hayes, B., Hernando-Gil, I., Collin, A., et al: ‘Optimal power flow for maximizing network benefits from demand-side management’, IEEE Trans. Power Syst., 2014, 29, (4), pp. 17391747.
    4. 4)
      • 4. Moradzadeh, B., Tomsovic, K.: ‘Two-stage residential energy management considering network operational constraints’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 23392346.
    5. 5)
      • 5. Molderink, A., Bakker, V., Bosman, M.G.C., et al: ‘Management and control of domestic smart grid technology’, IEEE Trans. Smart Grid, 2010, 1, (2), pp. 109119.
    6. 6)
      • 6. Rowe, M., Yunusov, T., Haben, S., et al: ‘A peak reduction scheduling algorithm for storage devices on the low voltage network’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 21152124.
    7. 7)
      • 7. Mohamed, A., Salehi, V., Mohammed, O.: ‘Real-time energy management algorithm for mitigation of pulse loads in hybrid microgrids’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 19111922.
    8. 8)
      • 8. Mohamed, A., Salehi, V., Ma, T, et al: ‘Real-time energy management algorithm for plug-in hybrid electric vehicle charging parks involving sustainable energy’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 577586.
    9. 9)
      • 9. Hayes, B.P., Gruber, J.K., Prodanovic, M.: ‘A closed-loop state estimation tool for mv network monitoring and operation’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 21162125.
    10. 10)
      • 10. Haben, S., Ward, J., Vukadinovic Greetham, D., et al: ‘A new error measure for forecasts of household-level, high resolution electrical energy consumption’, Int. J. Forecast., 2014, 30, (2), pp. 246256.
    11. 11)
      • 11. Hippert, H.S., Pedreira, C.E., Souza, R.C.: ‘Neural networks for short-term load forecasting: a review and evaluation’, IEEE Trans. Power Syst., 2001, 16, (1), pp. 4455.
    12. 12)
      • 12. Deihimi, A., Orang, O., Showkati, H.: ‘Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction’, Energy, 2013, 57, pp. 382401.
    13. 13)
      • 13. Ko, C.-N., Lee, C.-M.: ‘Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter’, Energy, 2013, 49, pp. 413422.
    14. 14)
      • 14. Che, J., Wang, J.: ‘Short-term load forecasting using a kernel-based support vector regression combination model’, Appl. Energy, 2014, 132, pp. 602609.
    15. 15)
      • 15. Li, S., Goel, L., Wang, P.: ‘An ensemble approach for short-term load forecasting by extreme learning machine’, Appl. Energy, 2016, 170, pp. 2229.
    16. 16)
      • 16. Ghofrani, M., Ghayekhloo, M., Arabali, A., et al: ‘A hybrid shortterm load forecasting with a new input selection framework’, Energy, 2015, 81, pp. 777786.
    17. 17)
      • 17. Hong, T., Fan, S.: ‘Probabilistic electric load forecasting: a tutorial review’, Int. J. Forecast., 2016, 32, (3), pp. 914938.
    18. 18)
      • 18. Fan, S, Methaprayoon, K., Lee, W.-J.: ‘Multiregion load forecasting for system with large geographical area’, IEEE Trans. Ind. Appl., 2009, 45, (4), pp. 14521459.
    19. 19)
      • 19. Fan, S., Chen, L., Lee, W.-J.: ‘Short-term load forecasting using comprehensive combination based on multimeteorological information’, IEEE Trans. Ind. Appl., 2009, 45, (4), pp. 14601466.
    20. 20)
      • 20. Nowotarski, J., Liu, B., Weron, R., et al: ‘Improving short term load forecast accuracy via combining sister forecasts’, Energy, 2016, 98, pp. 4049.
    21. 21)
      • 21. Quilumba, F.L., Lee, W.-J, Huang, H, et al: ‘Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 911918.
    22. 22)
      • 22. Haben, S., Singleton, C., glet Grindrod, P.: ‘Analysis and clustering of residential customers energy behavioral demand using smart meter data’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 136144.
    23. 23)
      • 23. Miranda, V., Pereira, J., Saraiva, J.T.: ‘Load allocation in DMS with a fuzzy state estimator’, IEEE Trans. Power Syst., 2000, 15, (2), pp. 529534.
    24. 24)
      • 24. Wan, J, Miu, K.N.: ‘Weighted least squares methods for load estimation in distribution networks’, IEEE Trans. Power Syst., 2003, 18, (4), pp. 13381345.
    25. 25)
      • 25. Broadwater, R.P., Khan, A.H., Shaalan, H.E., et al: ‘Time varying load analysis to reduce distribution losses through reconfiguration’, IEEE Trans. Power Deliv., 1993, 8, (1), pp. 294300.
    26. 26)
      • 26. Villalba, S.A., Bel, C.A.: ‘Hybrid demand model for load estimation and short term load forecasting in distribution electric systems’, IEEE Trans. Power Deliv., 2000, 15, (2), pp. 764769.
    27. 27)
      • 27. Wang, H., Schulz, N.: ‘Using AMR data for load estimation for distribution system analysis’, Electr. Power Syst. Res., 2006, 76, (5), pp. 336342.
    28. 28)
      • 28. Hayes, B.P., Gruber, J.K., Prodanovic, M.: ‘Short-term load forecasting at the local level using smart meter data’. PowerTech, 2015 IEEE, Eindhoven, June 2015, pp. 16.
    29. 29)
      • 29. Nose-Filho, K., Lotufo, A.D.P., Minussi, C.R.: ‘Short-term multinodal load forecasting using a modified general regression neural network’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 28622869.
    30. 30)
      • 30. Da Silva P.G., , Ilic, D., Karnouskos, S.: ‘The impact of smart grid prosumer grouping on forecasting accuracy and its benefits for local electricity market trading’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 402410.
    31. 31)
      • 31. Goude, Y., Nedellec, R., Kong, N.: ‘Local short and middle term electricity load forecasting with semi-parametric additive models’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 440446.
    32. 32)
      • 32. Sun, X., Luh, P.B., Cheung, K.W., et al: ‘An efficient approach to short-term load forecasting at the distribution level’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 25262537.
    33. 33)
      • 33. Paoletti, S., Casini, M., Giannitrapani, A., et al: ‘Load forecasting for active distribution networks’. IEEE PES Innovative Smart Grid Technologies (ISGT Europe), December 2011, pp. 1–6.
    34. 34)
      • 34. Hernandez, L., Baladron, C., Aguiar, J.M., et al: ‘A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants’, IEEE Commun. Mag., 2013, 51, (1), pp. 106113.
    35. 35)
      • 35. Hernandez, L., Baladron, C., Aguiar, J.M., et al: ‘Artificial neural networks for short-term load forecasting in microgrids environment’, Energy, 2014, 75, pp. 252264.
    36. 36)
      • 36. Liu, N., Tang, Q., Zhang, J., et al: ‘A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids’, Appl. Energy, 2014, 129, pp. 336345.
    37. 37)
      • 37. Hayes, B.P., Prodanovic, M.: ‘State forecasting and operational planning for distribution network energy management systems’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 10021011.
    38. 38)
      • 38. European Commision SmartHG Project. Available at http://www.smarthg.eu/, accessed 3 March 2018.
    39. 39)
      • 39. Danish Meteorological Institute. Available at http://www.dmi.dk/en/vejr/, accessed 3 March 2018.
    40. 40)
      • 40. CER Smart Metering Project. Available at http://www.ucd.ie/issda/data/, accessed 3 March 2018.
    41. 41)
      • 41. Met Éireann (Irish Meteorological Service). Available at http://www.met.ie, accessed 3 March 2018.
    42. 42)
      • 42. Test-an-EV project. Electrical Vehicle (EV) Data. Available at http://smarthg.di.uniroma1.it/test-an-ev/, accessed 3 March 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1599
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1599
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address