http://iet.metastore.ingenta.com
1887

Optimal sizing of an industrial microgrid considering socio-organisational aspects

Optimal sizing of an industrial microgrid considering socio-organisational aspects

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An industrial microgrid can be an effective way to introduce a high percentage of renewable power in the electrical energy supply of an industrial park. An optimal sizing process can be employed in the design phase of such a newly developed hybrid power system to assure the power system's technical and economic efficiency. While optimal sizing algorithms have been developed for different types of hybrid power systems, these often treat stand-alone systems and do not consider the socio-organisational drivers for inter-firm energy supply facilities. Here, a techno-economic optimisation is carried out using a genetic algorithm to determine the optimal system configuration of a grid-connected power system. The current development of the project Eiland Zwijnaarde in Ghent provides the basis for a concrete case study. The main results suggest that the optimal configuration consists of a significant share of renewable sources. A cogeneration unit can compensate the renewables’ intermittent behaviour and lower the thermal energy cost. Large-scale electrical storage is found not to be profitable under the used control structure. A gradual ingress of firms in the park and the subsequent sloped annual energy demand have a negative effect on the power system's fraction of shared facilities.

References

    1. 1)
      • 1. Zhao, H., Zhao, H., Guo, S.: ‘Evaluating the comprehensive benefit of eco-industrial parks by employing multi-criteria decision making approach for circular economy’, J. Clean. Prod., 2017, 142, pp. 22622276.
    2. 2)
      • 2. United Nations World Commission on Environment and Development: ‘Our common future1987.
    3. 3)
      • 3. Chertow, M.R.: ‘Industrial symbiosis: literature and taxonomy’, Annu. Rev. Energy Environ., 2000, 25, (1), pp. 313337.
    4. 4)
      • 4. Lasseter, R.H.: ‘Microgrids’. IEEE Power Engineering Society Winter Meeting. Conf. Proc., New York, NY, USA, January 2002, pp. 305308.
    5. 5)
      • 5. Hanna, R., Ghonima, M., Kleissl, J., et al: ‘Evaluating business models for microgrids: interactions of technology and policy’, Energy Policy, 2017, 103, (August 2016), pp. 4761.
    6. 6)
      • 6. Vandoorn, T.L., Vandevelde, L.: ‘Contribution of microgrids to the development of the smart grid’, in Bakken, D., Iniewski, K. (Eds.): ‘Smart grids: clouds, communications, open source, and automation’ (CRC Press, Boca Raton, FL, USA, 2012), pp. 191211.
    7. 7)
      • 7. Yang, H., Zhou, W., Lu, L., et al: ‘Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology by using genetic algorithm’, Sol. Energy, 2008, 82, (4), pp. 354367.
    8. 8)
      • 8. Tito, S.R., Lie, T.T., Anderson, T.N.: ‘Optimal sizing of a wind-photovoltaic-battery hybrid renewable energy system considering socio-demographic factors’, Sol. Energy, 2016, 136, pp. 525532.
    9. 9)
      • 9. Koutroulis, E., Kolokotsa, D., Potirakis, A., et al: ‘Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms’, Sol. Energy, 2006, 80, (9), pp. 10721088.
    10. 10)
      • 10. Ismail, M.S., Moghavvemi, M., Mahlia, T.M.I.: ‘Genetic algorithm based optimization on modeling and design of hybrid renewable energy systems’, Energy Convers. Manag., 2014, 85, pp. 120130.
    11. 11)
      • 11. Theo, W.L., Lim, J.S., Wan Alwi, S.R., et al: ‘An MILP model for cost-optimal planning of an on-grid hybrid power system for an eco-industrial park’, Energy, 2016, 116, pp. 14231441.
    12. 12)
      • 12. González, A., Riba, J.R., Rius, A., et al: ‘Optimal sizing of a hybrid grid-connected photovoltaic and wind power system’, Appl. Energy, 2015, 154, pp. 752762.
    13. 13)
      • 13. Kornelakis, A., Koutroulis, E.: ‘Methodology for the design optimisation and the economic analysis of grid-connected photovoltaic systems’, IET Renew. Power Gener., 2009, 3, (4), pp. 476492.
    14. 14)
      • 14. Tudor, T., Adam, E., Bates, M.: ‘Drivers and limitations for the successful development and functioning of EIPs (eco-industrial parks): a literature review’, Ecol. Econ., 2007, 61, (2–3), pp. 199207.
    15. 15)
      • 15. Erdinc, O., Uzunoglu, M.: ‘Optimum design of hybrid renewable energy systems: overview of different approaches’, Renew. Sustain. Energy Rev., 2012, 16, (3), pp. 14121425.
    16. 16)
      • 16. Fathima, A.H., Palanisamy, K.: ‘Optimization in microgrids with hybrid energy systems–a review’, Renew. Sustain. Energy Rev., 2015, 45, pp. 431446.
    17. 17)
      • 17. Ma, G., Xu, G., Chen, Y., et al: ‘Multi-objective optimal configuration method for a standalone wind-solar-battery hybrid power system’, IET Renew. Power Gener., 2017, 11, (1), pp. 194202.
    18. 18)
      • 18. Singh, S., Kaushik, S.C.: ‘Optimal sizing of grid integrated hybrid PV-biomass energy system using artificial bee colony algorithm’, IET Renew. Power Gener., 2016, 10, pp. 642650.
    19. 19)
      • 19. Zhao, B., Zhang, X., Li, P., et al: ‘Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on dongfushan island’, Appl. Energy, 2014, 113, pp. 16561666.
    20. 20)
      • 20. Andersen, A.N., Lund, H.: ‘New CHP partnerships offering balancing of fluctuating renewable electricity productions’, J. Clean. Prod., 2007, 15, pp. 288293.
    21. 21)
      • 21. Wang, H., Yin, W., Abdollahi, E., et al: ‘Modelling and optimization of CHP based district heating system with renewable energy production and energy storage’, Appl. Energy, 2015, 159, pp. 401421.
    22. 22)
      • 22. Ghadimi, P., Kara, S., Kornfeld, B.: ‘The optimal selection of on-site CHP systems through integrated sizing and operational strategy’, Appl. Energy, 2014, 126, pp. 3846.
    23. 23)
      • 23. Zhang, D., Evangelisti, S., Lettieri, P., et al: ‘Optimal design of CHP-based microgrids: multiobjective optimisation and life cycle assessment’, Energy, 2015, 85, pp. 181193.
    24. 24)
      • 24. Fossati, J.P., Galarza, A., Martin-Villate, A., et al: ‘A method for optimal sizing energy storage systems for microgrids’, Renew. Energy, 2015, 77, pp. 539549.
    25. 25)
      • 25. Chaouachi, A., Kamel, R.M., Andoulsi, R., et al: ‘Multiobjective intelligent energy management for a microgrid’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 16881699.
    26. 26)
      • 26. Fuchs, G., Lunz, B., Leuthold, M., et al: ‘Technology overview on electricity storage’, (Institut Für Stromrichtertechnik Und Elektrische Antriebe (ISEA), RWTH Aachen University, Aachen, Germany, 2012), p. 66.
    27. 27)
      • 27. International Energy Agency, Nuclear Energy Agency, Organisation for Economic Co-operation and Development: ‘Projected costs of generating electricity 2015’, 2015.
    28. 28)
      • 28. Darrow, K., Tidball, R., Wang, J., et al: ‘Catolog of CHP technologies’, 2015.
    29. 29)
      • 29. Katsigiannis, Y.A., Georgilakis, P.S., Karapidakis, E.S.: ‘Multiobjective genetic algorithm solution to the optimum economic and environmental performance problem of small autonomous hybrid power systems with renewables’, IET Renew. Power Gener., 2010, 4, (5), p. 404.
    30. 30)
      • 30. IPCC: ‘Climate change 2013 – the physical science basis’, 2014.
    31. 31)
      • 31. Mathworks: ‘How the genetic algorithm works’. Available athttps://se.mathworks.com/help/gads/how-the-genetic-algorithm-works.html, accessed August 2017.
    32. 32)
      • 32. Starke, M., Alkadi, N., Ma, O.: ‘Assessment of industrial load for demand response across U.S. regions of the western interconnect’, 2013.
    33. 33)
      • 33. Gils, H.C.: ‘Assessment of the theoretical demand response potential in Europe’, Energy, 2014, 67, pp. 118.
    34. 34)
      • 34. Messagie, M., Mertens, J., Oliveira, L., et al: ‘The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment’, Appl. Energy, 2014, 134, pp. 469476.
    35. 35)
      • 35. Millo, F., Rolando, L., Fuso, R., et al: ‘Real CO2 emissions benefits and end user's operating costs of a plug-in hybrid electric vehicle’, Appl. Energy, 2014, 114, pp. 563571.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1545
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1545
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address