http://iet.metastore.ingenta.com
1887

Global power grid interconnection for sustainable growth: concept, project and research direction

Global power grid interconnection for sustainable growth: concept, project and research direction

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Transcontinental grid interconnection and clean energy development for sustainability are the prime objectives to address through global energy interconnection (GEI) platform. Key issues can be solved through GEI such as environmental pollution, climate change, resources scarcity and unbalanced development. The growing concern of fossil fuel depletion leads to the exploitation of renewable energy which is mostly located on Arctic and Equator zones. This study addresses about the importance, current projects and research directions of clean energy, smart grid, ultra-high voltage transmission, grid interconnection trends around the world in order to globally interconnect the future grid. The review results provide comprehensive background knowledge to all the researchers in order to investigate further into the field.

References

    1. 1)
      • 1. Zhenya, L.: ‘Global energy interconnection’ (China Electric Power Press, Beijing, China, 2015).
    2. 2)
      • 2. Yinbiao Shu, L.M.A whitepaper on global energy interconnection’, 2017. Available at http://www.iec.ch/whitepaper/pdf/iecWP-globalenergyinterconnection.pdf.
    3. 3)
      • 3. Agency I.E.: ‘World energy outlook’ (Academic Press, Paris, France, 2016).
    4. 4)
      • 4. Bank T.W.: ‘Getting electricity reports’, 2015. Data retrieved from World Development Indicators, http://www.doingbusiness.org/data/exploretopics/getting-electricity.
    5. 5)
      • 5. Council W.E.: ‘World energy issues monitor report’, 2016. Available at https://www.worldenergy.org/wp-content/uploads/2016/03/2016-World-Energy-Issues-Monitor-Full-report.pdf.
    6. 6)
      • 6. Bongio, M., Avanzi, F., De.Michele, C.: ‘Hydroelectric power generation in an alpine basin: future water-energy scenarios in a run-of-the-river plant’, Adv. Water Resour., 2016, 94, pp. 318331.
    7. 7)
      • 7. Barbour, E., Wilson, I.G., Radcliffe, J., et al: ‘A review of pumped hydro energy storage development in significant international electricity markets’, Renew. Sust. Energy Rev., 2016, 61, pp. 421432.
    8. 8)
      • 8. Yang, A.S., Su, Y.M., Wen, C.Y., et al: ‘Estimation of wind power generation in dense urban area’, Appl. Energy, 2016, 171, pp. 213230.
    9. 9)
      • 9. Sedghi, M., Ahmadian, A., Aliakbar.Golkar, M.: ‘Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 304316.
    10. 10)
      • 10. Hou, G., Sun, H., Jiang, Z., et al: ‘Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China’, Appl. Energy, 2016, 164, pp. 882890.
    11. 11)
      • 11. Lamba, R., Kaushik, S.: ‘Modeling and performance analysis of a concentrated photovoltaic–thermoelectric hybrid power generation system’, Energy Convers. Manage., 2016, 115, pp. 288298.
    12. 12)
      • 12. Vakili, M., Hosseinalipour, S., Delfani, S., et al: ‘Photothermal properties of graphene nanoplatelets nanofluid for low-temperature direct absorption solar collectors’, Sol. Energy Mater. Sol. Cells, 2016, 152, pp. 187191.
    13. 13)
      • 13. Xu, X., Vignarooban, K., Xu, B., et al: ‘Prospects and problems of concentrating solar power technologies for power generation in the desert regions’, Renew. Sust. Energy Rev., 2016, 53, pp. 11061131.
    14. 14)
      • 14. Liu, M., Li, W., Wang, C., et al: ‘Reliability evaluation of a tidal power generation system considering tidal current speeds’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 31793188.
    15. 15)
      • 15. Zeng, J., Qiao, W.: ‘Short-term solar power prediction using a support vector machine’, Renew. Energy, 2013, 52, pp. 118127.
    16. 16)
      • 16. Kusiak, A., Zheng, H., Song, Z.: ‘Wind farm power prediction: a data-mining approach’, Wind Energy, 2009, 12, (3), pp. 275293.
    17. 17)
      • 17. Angelis.Dimakis, A., Biberacher, M., Dominguez, J., et al: ‘Methods and tools to evaluate the availability of renewable energy sources’, Renew. Sust. Energy Rev., 2011, 15, (2), pp. 11821200.
    18. 18)
      • 18. Wiser, R., Porter, K., Grace, R.: ‘Evaluating experience with renewables portfolio standards in the United States’, Mitigat. Adapt. Strategies Global Change, 2005, 10, (2), pp. 237263.
    19. 19)
      • 19. Kempton, W., Tomić, J.: ‘Vehicle-to-grid power implementation: from stabilizing the grid to supporting large-scale renewable energy’, J. Power Sources, 2005, 144, (1), pp. 280294.
    20. 20)
      • 20. Liu, J., Zhang, J.G., Yang, Z., et al: ‘Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid’, Adv. Funct. Mater., 2013, 23, (8), pp. 929946.
    21. 21)
      • 21. Pan, H., Hu, Y.S., Chen, L.: ‘Room-temperature stationary sodium-ion batteries for large-scale electric energy storage’, Energy Environ. Sci., 2013, 6, (8), pp. 23382360.
    22. 22)
      • 22. Zhenya, L.: ‘Innovation of UHVAC transmission technology in China’, Power Syst. Technol., 2013, 37, (3), pp. T1T8.
    23. 23)
      • 23. Song, Y., Fan, B., Bai, Y., et al: ‘Reliability and economic analysis of UHV half-wave-length ac transmission’. 2012 IEEE Int. Conf. Power System Technology (POWERCON), Auckland, New Zealand, November 2012, pp. 16..
    24. 24)
      • 24. Cheng, W., Liu, L.G., Zhang, Y.F., et al: ‘Numerical simulation study on power frequency electric field of UHVAC transmission lines’, High Volt. Appar., 2012, 48, (2), pp. 16.
    25. 25)
      • 25. Yang, L., Hao, Y., Li, L., et al: ‘Comparison of pollution flashover performance of porcelain long rod, disc type, and composite UHVDC insulators at high altitudes’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (3).
    26. 26)
      • 26. Han, Y., Li, L., Chen, H., et al: ‘Influence of modeling methods on the calculated lightning surge overvoltages at a UHVDC converter station due to backflashover’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 10901095.
    27. 27)
      • 27. Wei, X., Gao, C., Luo, X., et al: ‘A novel design of high-voltage dc circuit breaker in HVDC flexible transmission grid’, Autom. Electr. Power Syst., 2013, 15, p. 017.
    28. 28)
      • 28. Rouzbehi, K., Miranian, A., Candela, J.I., et al: ‘Proposals for flexible operation of multi-terminal dc grids: introducing flexible dc transmission system (FDCTS)’. 2014 IEEE Int. Conf. Renewable Energy Research and Application (ICRERA), Milwaukee, WI, USA, October 2014, pp. 180184.
    29. 29)
      • 29. Kalcon, G.O., Adam, G.P., Anaya.Lara, O., et al: ‘Small-signal stability analysis of multi-terminal vsc-based dc transmission systems’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 18181830.
    30. 30)
      • 30. Carvalho, N.B., Georgiadis, A., Costanzo, A., et al: ‘Wireless power transmission: R&D activities within Europe’, IEEE Trans. Microw. Theory Tech., 2014, 62, (4), pp. 10311045.
    31. 31)
      • 31. Martinez.Mares, A., Fuerte.Esquivel, C.R.: ‘A unified gas and power flow analysis in natural gas and electricity coupled networks’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 21562166.
    32. 32)
      • 32. Hamabe, M., Watanabe, H., Sun, J., et al: ‘Status of a 200-meter dc superconducting power transmission cable after cooling cycles’, IEEE Trans. Appl. Supercond., 2013, 23, (3), pp. 54002045400204.
    33. 33)
      • 33. Kostyuk, V., Antyukhov, I., Blagov, E., et al: ‘Experimental hybrid power transmission line with liquid hydrogen and mgb2-based superconducting cable’, Tech. Phys. Lett., 2012, 38, (3), pp. 279282.
    34. 34)
      • 34. Huang, C., Xiao, C., Fang, Y., et al: ‘A method to deal with packet transfer delay of sampled value in smart substation’, Power Syst. Technol., 2011, 1, p. 003.
    35. 35)
      • 35. Wang, D., Wang, Y., Di, J.: ‘Design scheme of condition monitoring system for smart substation’, Dianli Xitong Zidonghua (Autom. Electric Power Syst.), 2011, 35, (18), pp. 5156.
    36. 36)
      • 36. Dash, P., Pradhan, A., Panda, G., et al: ‘Adaptive relay setting for flexible ac transmission systems (facts)’, IEEE Trans. Power Deliv., 2000, 15, (1), pp. 3843.
    37. 37)
      • 37. Mohamed, Y.A.R.I., El Saadany, E.F.: ‘Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 28062816.
    38. 38)
      • 38. Katiraei, F., Iravani, M.R.: ‘Power management strategies for a microgrid with multiple distributed generation units’, IEEE Trans. Power Syst., 2006, 21, (4), pp. 18211831.
    39. 39)
      • 39. Madureira, A., Lopes, J.P.: ‘Coordinated voltage support in distribution networks with distributed generation and microgrids’, IET Renew. Power Gener., 2009, 3, (4), pp. 439454.
    40. 40)
      • 40. Rahimi, F., Ipakchi, A.: ‘Demand response as a market resource under the smart grid paradigm’, IEEE Trans. Smart Grid, 2010, 1, (1), pp. 8288.
    41. 41)
      • 41. Palensky, P., Dietrich, D.: ‘Demand side management: demand response, intelligent energy systems, and smart loads’, IEEE Trans. Ind. Inf., 2011, 7, (3), pp. 381388.
    42. 42)
      • 42. Mohsenian.Rad, A.H., Wong, V.W., Jatskevich, J., et al: ‘Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 320331.
    43. 43)
      • 43. Kanchev, H., Lu, D., Colas, F., et al: ‘Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 45834592.
    44. 44)
      • 44. Deilami, S., Masoum, A.S., Moses, P.S., et al: ‘Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile’, IEEE Trans. Smart Grid, 2011, 2, (3), pp. 456467.
    45. 45)
      • 45. Mwasilu, F., Justo, J.J., Kim, E.K., et al: ‘Electric vehicles and smart grid interaction: a review on vehicle to grid and renewable energy sources integration’, Renew. Sustain. Energy Rev., 2014, 34, pp. 501516.
    46. 46)
      • 46. Gungor, V.C., Lu, B., Hancke, G.P.: ‘Opportunities and challenges of wireless sensor networks in smart grid’, IEEE Trans. Ind. Electron., 2010, 57, (10), pp. 35573564.
    47. 47)
      • 47. Gungor, V.C., Sahin, D., Kocak, T., et al: ‘Smart grid technologies: communication technologies and standards’, IEEE Trans. Ind. Inf., 2011, 7, (4), pp. 529539.
    48. 48)
      • 48. Yun, M., Yuxin, B.: ‘Research on the architecture and key technology of internet of things (IoT) applied on smart grid’. 2010 Int. Conf. Advances in Energy Engineering (ICAEE), Beijing, China, June 2010, pp. 6972.
    49. 49)
      • 49. Bui, N., Castellani, A.P., Casari, P., et al: ‘The internet of energy: a webenabled smart grid system’, IEEE Netw., 2012, 26, (4).
    50. 50)
      • 50. Ericsson, G.N.: ‘Cyber security and power system communication – essential parts of a smart grid infrastructure’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 15011507.
    51. 51)
      • 51. Mo, Y., Kim, T.H.J., Brancik, K., et al: ‘Cyber-physical security of a smart grid infrastructure’, Proc. IEEE, 2012, 100, (1), pp. 195209.
    52. 52)
      • 52. Chang, Y., Li, Y.: ‘Power generation and cross-border grid planning for the integrated Asean electricity market: a dynamic linear programming model’, Energy Strategy Rev., 2013, 2, (2), pp. 153160.
    53. 53)
      • 53. Parshall, L., Pillai, D., Mohan, S., et al: ‘National electricity planning in settings with low pre-existing grid coverage: development of a spatial model and case study of Kenya’, Energy Policy, 2009, 37, (6), pp. 23952410.
    54. 54)
      • 54. Panda, R., Blaauw, D., Chaudhry, R., et al: ‘Model and analysis for combined package and on-chip power grid simulation’. Proc. 2000 Int. Symp. Low Power Electronics and Design, 2000. ISLPED'00, 2000, pp. 179184.
    55. 55)
      • 55. Chen, T.H., Chen, C.C.P.Efficient large-scale power grid analysis based on preconditioned Krylov-subspace iterative methods’. Proc. Design Automation Conf., 2001, pp. 559562.
    56. 56)
      • 56. Redfern, M., Usta, O., Fielding, G.: ‘Protection against loss of utility grid supply for a dispersed storage and generation unit’, IEEE Trans. Power Deliv., 1993, 8, (3), pp. 948954.
    57. 57)
      • 57. Zaiqiang, J.: ‘A survey on relay protection for grid-connection of large-scale wind farm’, Power Syst. Technol., 2012, 36, (7), pp. 195201.
    58. 58)
      • 58. Sortomme, E., El.Sharkawi, M.A.: ‘Optimal scheduling of vehicle-to-grid energy and ancillary services’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 351359.
    59. 59)
      • 59. Mitra, S., Sun, L., Grossmann, I.E.: ‘Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices’, Energy, 2013, 54, pp. 194211.
    60. 60)
      • 60. Commission E.: ‘Energy roadmap 2050’, 2012. Pdf file retrieved from European Commission archives, doi:10.2833/10759.
    61. 61)
      • 61. Of the President E.O.: ‘The president's climate action plan’, 2013. Article retrieved from Obama White House archives. Available at https://obamawhitehouse.archives.gov/sites/default/files/image/president27sclimateactionplan.pdf.
    62. 62)
      • 62. Nations U.: ‘Transforming our world: the 2030 agenda for sustainable development’, 2015. Article retrieved from UN archives. Available at https://www.un.org/pga/wp-content/uploads/sites/3/2015/08/120815_outcome-document-of-Summit-for-adoption-of-the-post-2015-development-agenda.pdf.
    63. 63)
      • 63. Group W.B.: ‘Climate change action plan 2016–2020’, 2016. Article retrieved from World Bank Organization. Available at https://openknowledge.worldbank.org/bitstream/handle/10986/24451/K8860.pdf?sequence=2.
    64. 64)
      • 64. Of Communist Party C.C.: ‘The 13th five year plan for economic and social development for PRC (2016–2020)’, 2016. Article retrieved from National Development and Reform Commission. Available at http://en.ndrc.gov.cn/newsrelease/201612/P020161207645765233498.pdf.
    65. 65)
      • 65. Zhenya, L.: ‘Ultra-high voltage AC/DC grids’ (China Electric Power Press, Beijing, China, 2014).
    66. 66)
      • 66. Council C.E.: ‘Power shift: a blueprint for a 21st century energy system’, 2016. Article retrieved from Australia Clean Energy Council. Available at https://www.cleanenergycouncil.org.au/dam/cec/policy-and-advocacy/reports/2016/power-shift.pdf.
    67. 67)
      • 67. Zhenya, L., Gesong, C., Xiupeng, G., et al: ‘A concept discussion on northeast Asia power grid interconnection’, CSEE J. Power Energy Syst., 2016, 2, (4), pp. 8793.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1536
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1536
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address