http://iet.metastore.ingenta.com
1887

Centralised busbar differential and wavelet-based line protection system for multi-terminal direct current grids, with practical IEC-61869-compliant measurements

Centralised busbar differential and wavelet-based line protection system for multi-terminal direct current grids, with practical IEC-61869-compliant measurements

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a method for discriminative detection of direct current (DC) faults on voltage source converter-powered multi-terminal high-voltage direct current transmission systems using two fundamental guiding principles, namely instantaneous current-differential and travelling waves. The proposed algorithm utilises local voltage and current measurements from all transmission lines connected to a DC busbar, and current measurement from the DC side of the converter. The scheme operates at a sampling frequency of 96 kHz, which conforms with IEC 61869-9. No long distance communication is involved while measurements and signal exchange within DC substations are enabled by the utilisation of IEC 61850. Performance is assessed firstly through detailed transient simulation, using verified models of modular multi-level converters, hybrid DC circuit breakers and inductive DC-line terminations. Furthermore, practical performance and feasibility of the scheme are evaluated through laboratory testing, using the real-time Opal-RT hardware prototyping platform. Simulation and experimental results demonstrate that the proposed protection algorithm can effectively, and within a very short period of time (i.e. <1 ms), discriminate between busbar and line faults (internal faults), while remaining stable during external faults. Additionally, it has been demonstrated that IEC 61869-9 is suitable for enabling fast DC protection schemes incorporating travelling waves.

References

    1. 1)
      • 1. Tzelepis, D., Rousis, A.O., Dysko, A., et al: ‘A new fault-ride-through strategy for MTDC networks incorporating wind farms and modular multilevel converters’, Int. J. Electr. Power Energy Syst., 2017, 92, pp. 104113.
    2. 2)
      • 2. Leterme, W., Beerten, J., Van Hertem, D.: ‘Non-unit protection of HVDC grids with inductive DC cable termination’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 820828.
    3. 3)
      • 3. Sneath, J., Rajapakse, A.: ‘Fault detection and interruption in an earthed HVDC grid using ROCOV and hybrid DC breakers’, IEEE Trans. Power Deliv., 2016, 31, (3), pp. 973981.
    4. 4)
      • 4. Li, R., Xu, L., Yao, L.: ‘DC fault detection and location in meshed multiterminal HVDC systems based on DC reactor voltage change rate’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 15161526.
    5. 5)
      • 5. Liu, J., Tai, N., Fan, C.: ‘Transient-voltage-based protection scheme for DC line faults in the multiterminal VSC-HVDC system’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 14831494.
    6. 6)
      • 6. Azad, S.P., Hertem, D.V.: ‘A fast local bus current-based primary relaying algorithm for HVDC grids’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 193202.
    7. 7)
      • 7. Tang, L., Ooi, B.-T.: ‘Locating and isolating DC faults in multi-terminal DC systems’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 18771884.
    8. 8)
      • 8. De Kerf, K., Srivastava, K., Reza, M., et al: ‘Wavelet-based protection strategy for DC faults in multi-terminal VSC HVDC systems’, IET Gener. Transm. Distrib., 2011, 5, (4), pp. 496503.
    9. 9)
      • 9. Cheng, J., Guan, M., Tang, L., et al: ‘A fault location criterion for MTDC transmission lines using transient current characteristics’, Int. J. Electr. Power Energy Syst., 2014, 61, pp. 647655.
    10. 10)
      • 10. Abu-Elanien, A.E., Elserougi, A.A., Abdel-Khalik, A.S., et al: ‘A differential protection technique for multi-terminal HVDC’, Electr. Power Syst. Res., 2016, 130, pp. 7888.
    11. 11)
      • 11. Hajian, M., Zhang, L., Jovcic, D.: ‘DC transmission grid with low-speed protection using mechanical DC circuit breakers’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 13831391.
    12. 12)
      • 12. Tzelepis, D., Dysko, A., Fusiek, G., et al: ‘Single-ended differential protection in MTDC networks using optical sensors’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 16051615.
    13. 13)
      • 13. Parikh, P.P., Sidhu, T.S., Shami, A.: ‘A comprehensive investigation of wireless LAN for IEC 61850 based smart distribution substation applications’, IEEE Trans. Ind. Inf., 2013, 9, (3), pp. 14661476.
    14. 14)
      • 14. Brahma, S.: ‘Advancements in centralized protection and control within a substation’, IEEE Trans. Power Deliv., 2016, 31, (4), pp. 19451952.
    15. 15)
      • 15. ‘IEC 61869-9: ED 1.0 instrument transformers – part 9: digital interface for instrument transformers’, BSI, 2013.
    16. 16)
      • 16. ‘IEEE recommended practice for implementing an IEC 61850-based substation communications, protection, monitoring, and control system’, IEEE Std 2030.100-2017, June 2017, pp. 167.
    17. 17)
      • 17. Liang, F., Jeyasurya, B.: ‘Transmission line distance protection using wavelet transform algorithm’, IEEE Trans. Power Deliv., 2004, 19, (2), pp. 545553.
    18. 18)
      • 18. Nanayakkara, O., Rajapakse, A., Wachal, R.: ‘Location of DC line faults in conventional HVDC systems with segments of cables and overhead lines using terminal measurements’, IEEE Trans. Power Deliv., 2012, 27, (1), pp. 279288.
    19. 19)
      • 19. Dong, X., Wang, J., Shi, S., et al: ‘Traveling wave based single-phase-to-ground protection method for power distribution system’, CSEE J. Power Energy Syst., 2015, 1, (2), pp. 7582.
    20. 20)
      • 20. Bucher, M.K., Franck, C.M.: ‘Analytic approximation of fault current contributions from capacitive components in HVDC cable networks’, IEEE Trans. Power Deliv., 2015, 30, (1), pp. 7481.
    21. 21)
      • 21. Dong, X., Kong, W., Cui, T.: ‘Fault classification and faulted-phase selection based on the initial current traveling wave’, IEEE Trans. Power Deliv., 2009, 24, (2), pp. 552559.
    22. 22)
      • 22. Blair, S.M., Roscoe, A.J., Irvine, J.: ‘Real-time compression of IEC 61869-9 sampled value data’. IEEE Int. Workshop on Applied Measurements for Power Systems, Aachen, Germany, September 2016, pp. 16.
    23. 23)
      • 23. Crossley, P.A., Guo, H., Ma, Z.: ‘Time synchronization for transmission substations using GPS and IEEE 1588’, CSEE J. Power Energy Syst., 2016, 2, (3), pp. 9199.
    24. 24)
      • 24. Blair, S.M., Coffele, F., Booth, C.D., et al: ‘An open platform for rapid-prototyping protection and control schemes with IEC 61850’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 11031110.
    25. 25)
      • 25. Chang, B., Cwikowski, O., Barnes, M., et al: ‘Review of different fault detection methods and their impact on pre-emptive VSC-HVDC dc protection performance’, High Volt., 2017, 2, (4), pp. 211219.
    26. 26)
      • 26. Tzelepis, D., Fusiek, G., Dysko, A., et al: ‘Novel fault location in MTDC grids with non-homogeneous transmission lines utilizing distributed current sensing technology’, IEEE Trans. Smart Grid, 2017, p. 1, DOI: 10.1109/TSG.2017.2764025.
    27. 27)
      • 27. Tzelepis, D., Dysko, A., Fusiek, G., et al: ‘Advanced fault location in MTDC networks utilising optically-multiplexed current measurements and machine learning approach’, Int. J. Electr. Power Energy Syst., 2018, 97, (Supplement C), pp. 319333.
    28. 28)
      • 28. Callavik, M., Blomberg, A., Hafner, J., et al: ‘The hybrid HVDC breaker’. ABB Grid Systems, November 2012, https://new.abb.com/docs/default-source/default-document-library/hybrid-hvdc-breaker---an-innovation-breakthrough-for-reliable-hvdc-gridsnov2012finmc20121210_clean.pdf.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1491
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1491
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address