http://iet.metastore.ingenta.com
1887

Optimal operation of a droop-controlled DCMG with generation and load uncertainties

Optimal operation of a droop-controlled DCMG with generation and load uncertainties

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a method for determining optimal droop settings of dispatchable distributed generation units in a droop-controlled microgrid (DCMG). The objectives are to (i) minimise the operational cost and (ii) minimise the emission in the DCMG while meeting all the operational constraints. The proposed formulation takes into account the electricity demand, load uncertainties and renewable power uncertainties in the MG. Load and renewable power uncertainties are modelled by Hong's point estimate method. The bi-objective optimisation problem is solved using fuzzified particle swarm optimisation. The proposed method is validated on a 6-bus DCMG test system. The results show the effectiveness of the proposed method.

References

    1. 1)
      • 1. Ipakchi, A., Albuyeh, F.: ‘Grid of the future’, IEEE Power Energy Mag., 2009, 7, (2), pp. 5262.
    2. 2)
      • 2. Lasseter, R.H., Paigi, P.: ‘Microgrid: a conceptual solution’. IEEE 35th Annual Power Electronics Specialists Conf., Aachen, Germany, June 2004, vol. 6, pp. 42854290.
    3. 3)
      • 3. Asad, R., Kazemi, A.: ‘A novel decentralized voltage control method for direct current microgrids with sensitive loads’, Int. Trans. Electr. Energy Syst., 2015, 25, (2), pp. 197215.
    4. 4)
      • 4. Vandoorn, T.L., Meersman, B., Degroote, L., et al: ‘A control strategy for islanded microgrids with dc-link voltage control’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 703713.
    5. 5)
      • 5. Kakigano, H., Miura, Y., Ise, T., et al: ‘DC micro-grid for super high quality distribution-system configuration and control of distributed generations and energy storage devices’. Proc. IEEE PESC, Jeju, South Korea, June 2006, vol. 6, pp. 17.
    6. 6)
      • 6. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop-controlled AC and DC microgrids – a general approach toward standardisation’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172.
    7. 7)
      • 7. Mohsenian-Rad, H., Davoudi, A.: ‘Towards building an optimal demand response framework for DC distribution networks’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 26262634.
    8. 8)
      • 8. Che, L., Shahidehpour, M.: ‘DC microgrids: economic operation and enhancement of resilience by hierarchical control’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 25172526.
    9. 9)
      • 9. Nutkani, I.U., Peng, W., Loh, P.C., et al: ‘Autonomous economic operation of grid connected DC microgrid’. IEEE Fifth Int. Symp. Power Electronics for Distributed Generation Systems, Galway, Ireland, June 2014, pp. 15.
    10. 10)
      • 10. Li, C., de Bosio, F., Chaudhary, S.K., et al: ‘Operation cost minimisation of droop-controlled DC microgrids based on real-time pricing and optimal power flow’. Industrial Electronics Society, IECON 2015-41st Annual Conf. IEEE, Yokohama, Japan, November 2015, pp. 003905003909.
    11. 11)
      • 11. Li, C., de Bosio, F., Chen, F., et al: ‘Economic dispatch for operating cost minimisation under real-time pricing in droop-controlled DC microgrid’, IEEE J. Emerging Sel. Top. Power Electron., 2017, 5, (1), pp. 587595.
    12. 12)
      • 12. Zhao, J., Dörfler, F.: ‘Distributed control and optimisation in DC microgrids’, Automatica, 2015, 61, pp. 1826.
    13. 13)
      • 13. Hamad, A.A., El-Saadany, E.F.: ‘Multi-agent supervisory control for optimal economic dispatch in DC microgrids’, Sustain. Cities Soc., 2016, 27, pp. 129136.
    14. 14)
      • 14. Li, C., Vasquez, J.C., Guerrero, J.M.: ‘Convergence analysis of distributed control for operation cost minimisation of droop controlled DC microgrid based on multiagent’. Applied Power Electronics Conf. and Exposition (APEC), Long Beach, CA, USA, March 2016, pp. 34593464.
    15. 15)
      • 15. Zaery, M., Ahmed, E.M., Orabi, M.: ‘Consensus algorithm based distributed control for economic operation of islanded DC microgrids’. 18th Int. Middle East Power Systems Conf. (MEPCON), Cairo, Egypt, December 2016, pp. 854859.
    16. 16)
      • 16. Hamad, A.A., Azzouz, M.A., El-Saadany, E.F.: ‘Multiagent supervisory control for power management in DC microgrids’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 10571068.
    17. 17)
      • 17. Ma, W.J., Wang, J., Lu, X., et al: ‘Optimal operation mode selection for a dc microgrid’, IEEE Trans. Smart Grid, 2016, 7, (6), pp. 26242632.
    18. 18)
      • 18. Deng, D., Li, G.: ‘Research on economic operation of grid-connected DC microgrid’. Int. Conf. Renewable Power Generation, Beijing, China, October 2015, pp. 16.
    19. 19)
      • 19. Energy, I.E.A.: ‘Climate change: world energy outlook special briefing for COP21’ (International Energy Agency, Paris, 2015).
    20. 20)
      • 20. International Energy Agency (IEA): ‘CO2 emissions from fuel combustion’ (International Energy Agency, Paris, 2017).
    21. 21)
      • 21. Abdallah, L., El-Shennawy, T.: ‘Reducing carbon dioxide emissions from electricity sector using smart electric grid applications’, J. Eng., 2013, 2013, pp. 18, http://dx.doi.org/10.1155/2013/845051.
    22. 22)
      • 22. Niknam, T., Golestaneh, F., Malekpour, A.: ‘Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm’, Energy, 2012, 43, (1), pp. 427437.
    23. 23)
      • 23. Aien, M., Hajebrahimi, A., Fotuhi-Firuzabad, M.: ‘A comprehensive review on uncertainty modeling techniques in power system studies’, Renew. Sustain. Energy Rev., 2016, 57, pp. 10771089.
    24. 24)
      • 24. Zadeh, L.A.: ‘Outline of a new approach to the analysis of complex systems and decision processes’, IEEE Trans. Syst. Man Cybern., 1973, 3, (1), pp. 2844.
    25. 25)
      • 25. Yager, R.R.: ‘Determining equivalent values for possibilistic variables’, IEEE Trans. Syst. Man Cybern. B (Cybern.), 2001, 31, (1), pp. 1931.
    26. 26)
      • 26. Aien, M., Rashidinejad, M., Fotuhi-Firuzabad, M.: ‘On possibilistic and probabilistic uncertainty assessment of power flow problem: a review and a new approach’, Renew. Sustain. Energy Rev., 2014, 37, pp. 883895.
    27. 27)
      • 27. Soroudi, A.: ‘Possibilistic-scenario model for DG impact assessment on distribution networks in an uncertain environment’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 12831293.
    28. 28)
      • 28. Ben-Haim, Y.: ‘Info-gap decision theory: decisions under severe uncertainty’ (Academic Press, Oxford, 2006, 2nd edn.).
    29. 29)
      • 29. Rabiee, A., Soroudi, A., Keane, A.: ‘Information gap decision theory based OPF with HVDC connected wind farms’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 33963406.
    30. 30)
      • 30. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: ‘Robust optimisation’ (Princeton University Press, Princeton, 2009).
    31. 31)
      • 31. Bertsimas, D., Sim, M.: ‘Robust discrete optimisation and network flows’, Math. Program., 2003, 98, (1), pp. 4971.
    32. 32)
      • 32. Conejo, A.J., Morales, J.M., Baringo, L.: ‘Real-time demand response model’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 236242.
    33. 33)
      • 33. Moore, R.E., Kearfott, R.B., Cloud, M.J.: ‘Introduction to interval analysis’ (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2009, 1st edn.).
    34. 34)
      • 34. Rubinstein, R.Y., Kroese, D.P.: ‘Simulation and the Monte Carlo methodvol. 10, (John Wiley & Sons, Hoboken, NJ, USA, 2016).
    35. 35)
      • 35. Nikoobakht, A., Aghaei, J., Mardaneh, M.: ‘Managing the risk of uncertain wind power generation in flexible power systems using information gap decision theory’, Energy, 2016, 114, pp. 846861.
    36. 36)
      • 36. Nikoobakht, A., Aghaei, J.: ‘IGDT-based robust optimal utilisation of wind power generation using coordinated flexibility resources’, IET Renew. Power Gener., 2016, 11, (2), pp. 264277.
    37. 37)
      • 37. Khodakarami, A., Farahani, H.F., Aghaei, J.: ‘Stochastic characterisation of electricity energy markets including plug-in electric vehicles’, Renew. Sustain. Energy Rev., 2017, 69, pp. 112122.
    38. 38)
      • 38. Shahidehpour, M., Kabiri, Y., Ehsan, M.: ‘Day-ahead self-scheduling of a transmission-constrained GenCo with variable generation units using the incomplete market information’, IEEE Trans. Sustain. Energy, 2017, 8, (3), pp. 12601268.
    39. 39)
      • 39. Gazijahani, F.S., Salehi, J.: ‘Robust design of microgrids with reconfigurable topology under severe uncertainty’, IEEE Trans. Sustain. Energy, 2018, 9, (2), pp. 559569.
    40. 40)
      • 40. Evangelopoulos, V.A., Georgilakis, P.S.: ‘Optimal distributed generation placement under uncertainties based on point estimate method embedded genetic algorithm’, IET Gener. Trans. Distrib., 2013, 8, (3), pp. 389400.
    41. 41)
      • 41. Atwa, Y.M., El-Saadany, E.F., Salama, M.M.A., et al: ‘Optimal renewable resources mix for distribution system energy loss minimisation’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 360370.
    42. 42)
      • 42. Kayal, P., Chanda, C.K.: ‘Optimal mix of solar and wind distributed generations considering performance improvement of electrical distribution network’, Renew. Energy, 2015, 75, pp. 173186.
    43. 43)
      • 43. Liu, Z., Wen, F., Ledwich, G.: ‘Optimal siting and sizing of distributed generators in distribution systems considering uncertainties’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 25412551.
    44. 44)
      • 44. Mohammadi, S., Mozafari, B., Solimani, S.: ‘Optimal operation management of microgrids using the point estimate method and firefly algorithm while considering uncertainty’, Turk. J. Electr. Eng. Comput. Sci., 2014, 22, (3), pp. 735753.
    45. 45)
      • 45. Mohammadi, S., Soleymani, S., Mozafari, B.: ‘Scenario-based stochastic operation management of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage devices’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 525535.
    46. 46)
      • 46. Niknam, T., Kavousifard, A., Aghaei, J.: ‘Scenario-based multiobjective distribution feeder reconfiguration considering wind power using adaptive modified particle swarm optimisation’, IET Renew. Power Gener., 2012, 6, (4), pp. 236247.
    47. 47)
      • 47. Su, C.L.: ‘Probabilistic load-flow computation using point estimate method’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 18431851.
    48. 48)
      • 48. Su, C.L., Lu, C.N.: ‘Two-point estimate method for quantifying transfer capability uncertainty’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 573579.
    49. 49)
      • 49. Hong, H.P.: ‘An efficient point estimate method for probabilistic analysis’, Reliab. Eng. Syst. Saf., 1998, 59, (3), pp. 261267.
    50. 50)
      • 50. Kennedy, J., Eberhart, R.C.: ‘Particle swarm optimisation’. Proc. IEEE Int. Conf. Neural Networks, Piscataway, NJ, 1995, pp. 19421948.
    51. 51)
      • 51. Bai, Q.: ‘Analysis of particle swarm optimisation algorithm’, Comput. Inf. Sci., 2010, 3, (1), p. 180.
    52. 52)
      • 52. Poli, R., Kennedy, J., Blackwell, T.: ‘Particle swarm optimisation’, Swarm Intell., 2007, 1, (1), pp. 3357.
    53. 53)
      • 53. Clerc, M.: ‘Particle swarm optimisationvol. 93, (John Wiley & Sons, Hoboken, NJ, USA, 2010).
    54. 54)
      • 54. Rosenblueth, E.: ‘Point estimates for probability moments’, Proc. Natl. Acad. Sci., 1975, 72, (10), pp. 38123814.
    55. 55)
      • 55. Harr, M.E.: ‘Probabilistic estimates for multivariate analyses’, Appl. Math. Model., 1989, 13, (5), pp. 313318.
    56. 56)
      • 56. Li, C., Chaudhary, S.K., Vasquez, J.C., et al: ‘Power flow analysis for droop controlled LV hybrid AC–DC microgrids with virtual impedance’. PES General Meeting Conf. Exposition, Washington DC, USA, July 2014, pp. 14.
    57. 57)
      • 57. Li, C., Chaudhary, S.K., Savaghebi, M., et al: ‘Power flow analysis for low-voltage AC and DC microgrids considering droop control and virtual impedance’, IEEE Trans. Smart Grid, 2017, 8, (6), pp. 27542764.
    58. 58)
      • 58. Gabbar, H.A., Zidan, A.: ‘Optimal scheduling of interconnected micro energy grids with multiple fuel options’, Sustain. Energy Grids Netw., 2016, 7, pp. 8089.
    59. 59)
      • 59. Zadeh, L.A.: ‘Fuzzy sets’, Inf. Control, 1965, 8, (3), pp. 338353.
    60. 60)
      • 60. Zimmermann, H.J.: ‘Fuzzy programming and linear programming with several objective functions’, Fuzzy Sets Syst., 1978, 1, (1), pp. 4555.
    61. 61)
      • 61. Das, D.: ‘A fuzzy multiobjective approach for network reconfiguration of distribution systems’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 202209.
    62. 62)
      • 62. Grigg, C., Wong, P., Albrecht, P., et al: ‘The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee’, IEEE Trans. Power Syst., 1999, 14, (3), pp. 10101020.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1443
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1443
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address