http://iet.metastore.ingenta.com
1887

Optimal operation of a droop-controlled DCMG with generation and load uncertainties

Optimal operation of a droop-controlled DCMG with generation and load uncertainties

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a method for determining optimal droop settings of dispatchable distributed generation units in a droop-controlled microgrid (DCMG). The objectives are to (i) minimise the operational cost and (ii) minimise the emission in the DCMG while meeting all the operational constraints. The proposed formulation takes into account the electricity demand, load uncertainties and renewable power uncertainties in the MG. Load and renewable power uncertainties are modelled by Hong's point estimate method. The bi-objective optimisation problem is solved using fuzzified particle swarm optimisation. The proposed method is validated on a 6-bus DCMG test system. The results show the effectiveness of the proposed method.

References

    1. 1)
      • A. Ipakchi , F. Albuyeh .
        1. Ipakchi, A., Albuyeh, F.: ‘Grid of the future’, IEEE Power Energy Mag., 2009, 7, (2), pp. 5262.
        . IEEE Power Energy Mag. , 2 , 52 - 62
    2. 2)
      • R.H. Lasseter , P. Paigi .
        2. Lasseter, R.H., Paigi, P.: ‘Microgrid: a conceptual solution’. IEEE 35th Annual Power Electronics Specialists Conf., Aachen, Germany, June 2004, vol. 6, pp. 42854290.
        . IEEE 35th Annual Power Electronics Specialists Conf. , 4285 - 4290
    3. 3)
      • R. Asad , A. Kazemi .
        3. Asad, R., Kazemi, A.: ‘A novel decentralized voltage control method for direct current microgrids with sensitive loads’, Int. Trans. Electr. Energy Syst., 2015, 25, (2), pp. 197215.
        . Int. Trans. Electr. Energy Syst. , 2 , 197 - 215
    4. 4)
      • T.L. Vandoorn , B. Meersman , L. Degroote .
        4. Vandoorn, T.L., Meersman, B., Degroote, L., et al: ‘A control strategy for islanded microgrids with dc-link voltage control’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 703713.
        . IEEE Trans. Power Deliv. , 2 , 703 - 713
    5. 5)
      • H. Kakigano , Y. Miura , T. Ise .
        5. Kakigano, H., Miura, Y., Ise, T., et al: ‘DC micro-grid for super high quality distribution-system configuration and control of distributed generations and energy storage devices’. Proc. IEEE PESC, Jeju, South Korea, June 2006, vol. 6, pp. 17.
        . Proc. IEEE PESC , 1 - 7
    6. 6)
      • J.M. Guerrero , J.C. Vasquez , J. Matas .
        6. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop-controlled AC and DC microgrids – a general approach toward standardisation’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172.
        . IEEE Trans. Ind. Electron. , 1 , 158 - 172
    7. 7)
      • H. Mohsenian-Rad , A. Davoudi .
        7. Mohsenian-Rad, H., Davoudi, A.: ‘Towards building an optimal demand response framework for DC distribution networks’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 26262634.
        . IEEE Trans. Smart Grid , 5 , 2626 - 2634
    8. 8)
      • L. Che , M. Shahidehpour .
        8. Che, L., Shahidehpour, M.: ‘DC microgrids: economic operation and enhancement of resilience by hierarchical control’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 25172526.
        . IEEE Trans. Smart Grid , 5 , 2517 - 2526
    9. 9)
      • I.U. Nutkani , W. Peng , P.C. Loh .
        9. Nutkani, I.U., Peng, W., Loh, P.C., et al: ‘Autonomous economic operation of grid connected DC microgrid’. IEEE Fifth Int. Symp. Power Electronics for Distributed Generation Systems, Galway, Ireland, June 2014, pp. 15.
        . IEEE Fifth Int. Symp. Power Electronics for Distributed Generation Systems , 1 - 5
    10. 10)
      • C. Li , F. de Bosio , S.K. Chaudhary .
        10. Li, C., de Bosio, F., Chaudhary, S.K., et al: ‘Operation cost minimisation of droop-controlled DC microgrids based on real-time pricing and optimal power flow’. Industrial Electronics Society, IECON 2015-41st Annual Conf. IEEE, Yokohama, Japan, November 2015, pp. 003905003909.
        . Industrial Electronics Society, IECON 2015-41st Annual Conf. IEEE , 003905 - 003909
    11. 11)
      • C. Li , F. de Bosio , F. Chen .
        11. Li, C., de Bosio, F., Chen, F., et al: ‘Economic dispatch for operating cost minimisation under real-time pricing in droop-controlled DC microgrid’, IEEE J. Emerging Sel. Top. Power Electron., 2017, 5, (1), pp. 587595.
        . IEEE J. Emerging Sel. Top. Power Electron. , 1 , 587 - 595
    12. 12)
      • J. Zhao , F. Dörfler .
        12. Zhao, J., Dörfler, F.: ‘Distributed control and optimisation in DC microgrids’, Automatica, 2015, 61, pp. 1826.
        . Automatica , 18 - 26
    13. 13)
      • A.A. Hamad , E.F. El-Saadany .
        13. Hamad, A.A., El-Saadany, E.F.: ‘Multi-agent supervisory control for optimal economic dispatch in DC microgrids’, Sustain. Cities Soc., 2016, 27, pp. 129136.
        . Sustain. Cities Soc. , 129 - 136
    14. 14)
      • C. Li , J.C. Vasquez , J.M. Guerrero .
        14. Li, C., Vasquez, J.C., Guerrero, J.M.: ‘Convergence analysis of distributed control for operation cost minimisation of droop controlled DC microgrid based on multiagent’. Applied Power Electronics Conf. and Exposition (APEC), Long Beach, CA, USA, March 2016, pp. 34593464.
        . Applied Power Electronics Conf. and Exposition (APEC) , 3459 - 3464
    15. 15)
      • M. Zaery , E.M. Ahmed , M. Orabi .
        15. Zaery, M., Ahmed, E.M., Orabi, M.: ‘Consensus algorithm based distributed control for economic operation of islanded DC microgrids’. 18th Int. Middle East Power Systems Conf. (MEPCON), Cairo, Egypt, December 2016, pp. 854859.
        . 18th Int. Middle East Power Systems Conf. (MEPCON) , 854 - 859
    16. 16)
      • A.A. Hamad , M.A. Azzouz , E.F. El-Saadany .
        16. Hamad, A.A., Azzouz, M.A., El-Saadany, E.F.: ‘Multiagent supervisory control for power management in DC microgrids’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 10571068.
        . IEEE Trans. Smart Grid , 2 , 1057 - 1068
    17. 17)
      • W.J. Ma , J. Wang , X. Lu .
        17. Ma, W.J., Wang, J., Lu, X., et al: ‘Optimal operation mode selection for a dc microgrid’, IEEE Trans. Smart Grid, 2016, 7, (6), pp. 26242632.
        . IEEE Trans. Smart Grid , 6 , 2624 - 2632
    18. 18)
      • D. Deng , G. Li .
        18. Deng, D., Li, G.: ‘Research on economic operation of grid-connected DC microgrid’. Int. Conf. Renewable Power Generation, Beijing, China, October 2015, pp. 16.
        . Int. Conf. Renewable Power Generation , 1 - 6
    19. 19)
      • I.E.A. Energy . (2015)
        19. Energy, I.E.A.: ‘Climate change: world energy outlook special briefing for COP21’ (International Energy Agency, Paris, 2015).
        .
    20. 20)
      • (2017)
        20. International Energy Agency (IEA): ‘CO2 emissions from fuel combustion’ (International Energy Agency, Paris, 2017).
        .
    21. 21)
      • L. Abdallah , T. El-Shennawy .
        21. Abdallah, L., El-Shennawy, T.: ‘Reducing carbon dioxide emissions from electricity sector using smart electric grid applications’, J. Eng., 2013, 2013, pp. 18, http://dx.doi.org/10.1155/2013/845051.
        . J. Eng. , 1 - 8
    22. 22)
      • T. Niknam , F. Golestaneh , A. Malekpour .
        22. Niknam, T., Golestaneh, F., Malekpour, A.: ‘Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm’, Energy, 2012, 43, (1), pp. 427437.
        . Energy , 1 , 427 - 437
    23. 23)
      • M. Aien , A. Hajebrahimi , M. Fotuhi-Firuzabad .
        23. Aien, M., Hajebrahimi, A., Fotuhi-Firuzabad, M.: ‘A comprehensive review on uncertainty modeling techniques in power system studies’, Renew. Sustain. Energy Rev., 2016, 57, pp. 10771089.
        . Renew. Sustain. Energy Rev. , 1077 - 1089
    24. 24)
      • L.A. Zadeh .
        24. Zadeh, L.A.: ‘Outline of a new approach to the analysis of complex systems and decision processes’, IEEE Trans. Syst. Man Cybern., 1973, 3, (1), pp. 2844.
        . IEEE Trans. Syst. Man Cybern. , 1 , 28 - 44
    25. 25)
      • R.R. Yager .
        25. Yager, R.R.: ‘Determining equivalent values for possibilistic variables’, IEEE Trans. Syst. Man Cybern. B (Cybern.), 2001, 31, (1), pp. 1931.
        . IEEE Trans. Syst. Man Cybern. B (Cybern.) , 1 , 19 - 31
    26. 26)
      • M. Aien , M. Rashidinejad , M. Fotuhi-Firuzabad .
        26. Aien, M., Rashidinejad, M., Fotuhi-Firuzabad, M.: ‘On possibilistic and probabilistic uncertainty assessment of power flow problem: a review and a new approach’, Renew. Sustain. Energy Rev., 2014, 37, pp. 883895.
        . Renew. Sustain. Energy Rev. , 883 - 895
    27. 27)
      • A. Soroudi .
        27. Soroudi, A.: ‘Possibilistic-scenario model for DG impact assessment on distribution networks in an uncertain environment’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 12831293.
        . IEEE Trans. Power Syst. , 3 , 1283 - 1293
    28. 28)
      • Y. Ben-Haim . (2006)
        28. Ben-Haim, Y.: ‘Info-gap decision theory: decisions under severe uncertainty’ (Academic Press, Oxford, 2006, 2nd edn.).
        .
    29. 29)
      • A. Rabiee , A. Soroudi , A. Keane .
        29. Rabiee, A., Soroudi, A., Keane, A.: ‘Information gap decision theory based OPF with HVDC connected wind farms’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 33963406.
        . IEEE Trans. Power Syst. , 6 , 3396 - 3406
    30. 30)
      • A. Ben-Tal , L. El Ghaoui , A. Nemirovski . (2009)
        30. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: ‘Robust optimisation’ (Princeton University Press, Princeton, 2009).
        .
    31. 31)
      • D. Bertsimas , M. Sim .
        31. Bertsimas, D., Sim, M.: ‘Robust discrete optimisation and network flows’, Math. Program., 2003, 98, (1), pp. 4971.
        . Math. Program. , 1 , 49 - 71
    32. 32)
      • A.J. Conejo , J.M. Morales , L. Baringo .
        32. Conejo, A.J., Morales, J.M., Baringo, L.: ‘Real-time demand response model’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 236242.
        . IEEE Trans. Smart Grid , 3 , 236 - 242
    33. 33)
      • R.E. Moore , R.B. Kearfott , M.J. Cloud . (2009)
        33. Moore, R.E., Kearfott, R.B., Cloud, M.J.: ‘Introduction to interval analysis’ (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2009, 1st edn.).
        .
    34. 34)
      • R.Y. Rubinstein , D.P. Kroese . (2016)
        34. Rubinstein, R.Y., Kroese, D.P.: ‘Simulation and the Monte Carlo methodvol. 10, (John Wiley & Sons, Hoboken, NJ, USA, 2016).
        .
    35. 35)
      • A. Nikoobakht , J. Aghaei , M. Mardaneh .
        35. Nikoobakht, A., Aghaei, J., Mardaneh, M.: ‘Managing the risk of uncertain wind power generation in flexible power systems using information gap decision theory’, Energy, 2016, 114, pp. 846861.
        . Energy , 846 - 861
    36. 36)
      • A. Nikoobakht , J. Aghaei .
        36. Nikoobakht, A., Aghaei, J.: ‘IGDT-based robust optimal utilisation of wind power generation using coordinated flexibility resources’, IET Renew. Power Gener., 2016, 11, (2), pp. 264277.
        . IET Renew. Power Gener. , 2 , 264 - 277
    37. 37)
      • A. Khodakarami , H.F. Farahani , J. Aghaei .
        37. Khodakarami, A., Farahani, H.F., Aghaei, J.: ‘Stochastic characterisation of electricity energy markets including plug-in electric vehicles’, Renew. Sustain. Energy Rev., 2017, 69, pp. 112122.
        . Renew. Sustain. Energy Rev. , 112 - 122
    38. 38)
      • M. Shahidehpour , Y. Kabiri , M. Ehsan .
        38. Shahidehpour, M., Kabiri, Y., Ehsan, M.: ‘Day-ahead self-scheduling of a transmission-constrained GenCo with variable generation units using the incomplete market information’, IEEE Trans. Sustain. Energy, 2017, 8, (3), pp. 12601268.
        . IEEE Trans. Sustain. Energy , 3 , 1260 - 1268
    39. 39)
      • F.S. Gazijahani , J. Salehi .
        39. Gazijahani, F.S., Salehi, J.: ‘Robust design of microgrids with reconfigurable topology under severe uncertainty’, IEEE Trans. Sustain. Energy, 2018, 9, (2), pp. 559569.
        . IEEE Trans. Sustain. Energy , 2 , 559 - 569
    40. 40)
      • V.A. Evangelopoulos , P.S. Georgilakis .
        40. Evangelopoulos, V.A., Georgilakis, P.S.: ‘Optimal distributed generation placement under uncertainties based on point estimate method embedded genetic algorithm’, IET Gener. Trans. Distrib., 2013, 8, (3), pp. 389400.
        . IET Gener. Trans. Distrib. , 3 , 389 - 400
    41. 41)
      • Y.M. Atwa , E.F. El-Saadany , M.M.A. Salama .
        41. Atwa, Y.M., El-Saadany, E.F., Salama, M.M.A., et al: ‘Optimal renewable resources mix for distribution system energy loss minimisation’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 360370.
        . IEEE Trans. Power Syst. , 1 , 360 - 370
    42. 42)
      • P. Kayal , C.K. Chanda .
        42. Kayal, P., Chanda, C.K.: ‘Optimal mix of solar and wind distributed generations considering performance improvement of electrical distribution network’, Renew. Energy, 2015, 75, pp. 173186.
        . Renew. Energy , 173 - 186
    43. 43)
      • Z. Liu , F. Wen , G. Ledwich .
        43. Liu, Z., Wen, F., Ledwich, G.: ‘Optimal siting and sizing of distributed generators in distribution systems considering uncertainties’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 25412551.
        . IEEE Trans. Power Deliv. , 4 , 2541 - 2551
    44. 44)
      • S. Mohammadi , B. Mozafari , S. Solimani .
        44. Mohammadi, S., Mozafari, B., Solimani, S.: ‘Optimal operation management of microgrids using the point estimate method and firefly algorithm while considering uncertainty’, Turk. J. Electr. Eng. Comput. Sci., 2014, 22, (3), pp. 735753.
        . Turk. J. Electr. Eng. Comput. Sci. , 3 , 735 - 753
    45. 45)
      • S. Mohammadi , S. Soleymani , B. Mozafari .
        45. Mohammadi, S., Soleymani, S., Mozafari, B.: ‘Scenario-based stochastic operation management of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage devices’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 525535.
        . Int. J. Electr. Power Energy Syst. , 525 - 535
    46. 46)
      • T. Niknam , A. Kavousifard , J. Aghaei .
        46. Niknam, T., Kavousifard, A., Aghaei, J.: ‘Scenario-based multiobjective distribution feeder reconfiguration considering wind power using adaptive modified particle swarm optimisation’, IET Renew. Power Gener., 2012, 6, (4), pp. 236247.
        . IET Renew. Power Gener. , 4 , 236 - 247
    47. 47)
      • C.L. Su .
        47. Su, C.L.: ‘Probabilistic load-flow computation using point estimate method’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 18431851.
        . IEEE Trans. Power Syst. , 4 , 1843 - 1851
    48. 48)
      • C.L. Su , C.N. Lu .
        48. Su, C.L., Lu, C.N.: ‘Two-point estimate method for quantifying transfer capability uncertainty’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 573579.
        . IEEE Trans. Power Syst. , 2 , 573 - 579
    49. 49)
      • H.P. Hong .
        49. Hong, H.P.: ‘An efficient point estimate method for probabilistic analysis’, Reliab. Eng. Syst. Saf., 1998, 59, (3), pp. 261267.
        . Reliab. Eng. Syst. Saf. , 3 , 261 - 267
    50. 50)
      • J. Kennedy , R.C. Eberhart .
        50. Kennedy, J., Eberhart, R.C.: ‘Particle swarm optimisation’. Proc. IEEE Int. Conf. Neural Networks, Piscataway, NJ, 1995, pp. 19421948.
        . Proc. IEEE Int. Conf. Neural Networks , 1942 - 1948
    51. 51)
      • Q. Bai .
        51. Bai, Q.: ‘Analysis of particle swarm optimisation algorithm’, Comput. Inf. Sci., 2010, 3, (1), p. 180.
        . Comput. Inf. Sci. , 1 , 180
    52. 52)
      • R. Poli , J. Kennedy , T. Blackwell .
        52. Poli, R., Kennedy, J., Blackwell, T.: ‘Particle swarm optimisation’, Swarm Intell., 2007, 1, (1), pp. 3357.
        . Swarm Intell. , 1 , 33 - 57
    53. 53)
      • M. Clerc . (2010)
        53. Clerc, M.: ‘Particle swarm optimisationvol. 93, (John Wiley & Sons, Hoboken, NJ, USA, 2010).
        .
    54. 54)
      • E. Rosenblueth .
        54. Rosenblueth, E.: ‘Point estimates for probability moments’, Proc. Natl. Acad. Sci., 1975, 72, (10), pp. 38123814.
        . Proc. Natl. Acad. Sci. , 10 , 3812 - 3814
    55. 55)
      • M.E. Harr .
        55. Harr, M.E.: ‘Probabilistic estimates for multivariate analyses’, Appl. Math. Model., 1989, 13, (5), pp. 313318.
        . Appl. Math. Model. , 5 , 313 - 318
    56. 56)
      • C. Li , S.K. Chaudhary , J.C. Vasquez .
        56. Li, C., Chaudhary, S.K., Vasquez, J.C., et al: ‘Power flow analysis for droop controlled LV hybrid AC–DC microgrids with virtual impedance’. PES General Meeting Conf. Exposition, Washington DC, USA, July 2014, pp. 14.
        . PES General Meeting Conf. Exposition , 1 - 4
    57. 57)
      • C. Li , S.K. Chaudhary , M. Savaghebi .
        57. Li, C., Chaudhary, S.K., Savaghebi, M., et al: ‘Power flow analysis for low-voltage AC and DC microgrids considering droop control and virtual impedance’, IEEE Trans. Smart Grid, 2017, 8, (6), pp. 27542764.
        . IEEE Trans. Smart Grid , 6 , 2754 - 2764
    58. 58)
      • H.A. Gabbar , A. Zidan .
        58. Gabbar, H.A., Zidan, A.: ‘Optimal scheduling of interconnected micro energy grids with multiple fuel options’, Sustain. Energy Grids Netw., 2016, 7, pp. 8089.
        . Sustain. Energy Grids Netw. , 80 - 89
    59. 59)
      • L.A. Zadeh .
        59. Zadeh, L.A.: ‘Fuzzy sets’, Inf. Control, 1965, 8, (3), pp. 338353.
        . Inf. Control , 3 , 338 - 353
    60. 60)
      • H.J. Zimmermann .
        60. Zimmermann, H.J.: ‘Fuzzy programming and linear programming with several objective functions’, Fuzzy Sets Syst., 1978, 1, (1), pp. 4555.
        . Fuzzy Sets Syst. , 1 , 45 - 55
    61. 61)
      • D. Das .
        61. Das, D.: ‘A fuzzy multiobjective approach for network reconfiguration of distribution systems’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 202209.
        . IEEE Trans. Power Deliv. , 1 , 202 - 209
    62. 62)
      • C. Grigg , P. Wong , P. Albrecht .
        62. Grigg, C., Wong, P., Albrecht, P., et al: ‘The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee’, IEEE Trans. Power Syst., 1999, 14, (3), pp. 10101020.
        . IEEE Trans. Power Syst. , 3 , 1010 - 1020
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1443
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1443
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address