http://iet.metastore.ingenta.com
1887

Flexibility contribution of heat ventilation and air conditioning loads in a multi-stage robust unit commitment with non-deterministic variability-oriented ramp reserves

Flexibility contribution of heat ventilation and air conditioning loads in a multi-stage robust unit commitment with non-deterministic variability-oriented ramp reserves

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Aside from conventional generation units, heat ventilation and air-conditioning (HVAC) loads, thanks to their inherent thermal capacity storage, are reasonable alternatives to mitigate short-term variability impacts in power systems with high renewable energy sources (RES). Accordingly, HVAC loads are integrated into a multi-stage multi-resolution robust unit commitment considering non-deterministic variability-oriented reserves to address operational flexibility requirement in power systems. Since common two-stage robust optimisations are over-conservative, non-causal and in general NP-hard, a non-conservative extended affinely adjustable robust optimisation approach is proposed to provide causality, enhance computational tractability and improve optimality in a multi-stage robust decision-making framework. In addition, since existing hourly resolution scheduling is unable to track fast and frequent variations in RES, the proposed framework is multi-resolution including both hourly and sub-hourly resolutions. Moreover, unlike conventional deterministic flexible ramp reserve procurement, a robust variability-oriented reserve scheduling is presented to determine adequate while economic and technically deliverable flexible ramp reserves from both generation and demand sides. The effectiveness of the proposed model is illustrated on the IEEE 24-bus reliability test system.

References

    1. 1)
      • 1. Ela, E., O'Malley, M.: ‘Scheduling and pricing for expected ramp capability in real-time power markets’, IEEE Trans. Power Syst., 2015, PP, (99), pp. 111.
    2. 2)
      • 2. Ma, J., Silva, V., Belhomme, R., et al: ‘Evaluating and planning flexibility in sustainable power systems’, IEEE Trans. Sustain. Energy, 2013, 4, (1), pp. 200209.
    3. 3)
      • 3. Lannoye, E., Flynn, D., O'Malley, M.: ‘Evaluation of power system flexibility’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 922931.
    4. 4)
      • 4. Navid, N., Rosenwald, G.: ‘Market solutions for managing ramp flexibility with high penetration of renewable resource’, IEEE Trans. Sustain. Energy, 2012, 3, (4), pp. 784790.
    5. 5)
      • 5. Aghaei, J., Alizadeh, M.I., Abdollahi, A., et al: ‘Allocation of demand response resources: towards an effective contribution to power system voltage stability’, IET Gener. Transm. Distrib., 2016, 10, (16), pp. 41694177.
    6. 6)
      • 6. Ali, M., Degefa, M.Z., Humayun, M., et al: ‘Increased utilization of wind generation by coordinating the demand response and real-time thermal rating’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 37373746.
    7. 7)
      • 7. Aghaei, J., Barani, M., Shafie-khah, M., et al: ‘Risk-constrained offering strategy for aggregated hybrid power plant including wind power producer and demand response provider’, IEEE Trans. Sustain. Energy, 2016, 7, (2), pp. 513525.
    8. 8)
      • 8. Moshari, A., Ebrahimi, A., Fotuhi-Firuzabad, M.: ‘Short-term impacts of DR programs on reliability of wind integrated power systems considering demand-side uncertainties’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 24812490.
    9. 9)
      • 9. Yang, S., Zeng, D., Ding, H., et al: ‘Stochastic security-constrained economic dispatch for random responsive price-elastic load and wind power’, IET Renew. Power Gener., 2016, 10, (7), pp. 936943.
    10. 10)
      • 10. Wu, H., Shahidehpour, M., Alabdulwahab, A., et al: ‘Thermal generation flexibility with ramping costs and hourly demand response in stochastic security-constrained scheduling of variable energy sources’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 29552964.
    11. 11)
      • 11. Wu, H., Shahidehpour, M., Khodayar, M.E.: ‘Hourly demand response in day-ahead scheduling considering generating unit ramping cost’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 24462454.
    12. 12)
      • 12. Trovato, V., Tindemans, S.H., Strbac, G.: ‘Leaky storage model for optimal multi-service allocation of thermostatic loads’, IET Gener. Transm. Distrib., 2016, 10, (3), pp. 585593.
    13. 13)
      • 13. Alahäivälä, A., Ekström, J., Jokisalo, J., et al: ‘A framework for the assessment of electric heating load flexibility contribution to mitigate severe wind power ramp effects’, Electr. Power Syst. Res., 2017, 142, pp. 268278.
    14. 14)
      • 14. Staff P.J.M.: ‘2015 PJM reserve requirement study’, Available at http://www.pjm.com/~/media/committees-groups/subcommittees/raas/20150930/20150930-pjm-reserve-requirement-study.ashx, 2015.
    15. 15)
      • 15. Xu, L., Tretheway, D.: ‘Flexible ramping product’ (California ISO, Folsom, CA, USA, 2014).
    16. 16)
      • 16. Navid, N., Rosenwald, G.: ‘Ramp capability product design for MISO markets, market development and analysis’, 2012, https://old.misoenergy.org/_layouts/MISO/ECM/Redirect.aspx?ID=112806.
    17. 17)
      • 17. Abdul-Rahman, K.H., Alarian, H., Rothleder, M., et al: ‘Enhanced system reliability using flexible ramp constraint in CAISO market’. Proc. IEEE Power and Energy Society General Meeting, 2012, pp. 16.
    18. 18)
      • 18. Marneris, I.G., Biskas, P.N., Bakirtzis, E.A.: ‘An integrated scheduling approach to underpin flexibility in European power systems’, IEEE Trans. Sustain. Energy, 2015, PP, (99), pp. 111.
    19. 19)
      • 19. Gribik, P.R., Chatterjee, D., Navid, N.: ‘Potential new products and models to improve an RTO's ability to manage uncertainty’. IEEE Power and Energy Society General Meeting, 2012, pp. 15.
    20. 20)
      • 20. Wang, B., Hobbs, B.F.: ‘Real-time markets for Flexiramp: a stochastic unit commitment-based analysis’, IEEE Trans. Power Syst., 2015, PP, (99), pp. 115.
    21. 21)
      • 21. Marneris, I.G., Biskas, P.N., Bakirtzis, A.G.: ‘Stochastic and deterministic unit commitment considering uncertainty and variability reserves for high renewable integration’, Energies, 2017, 10, (1), p. 140.
    22. 22)
      • 22. Zheng, Q.P., Jianhui, W., Liu, A.L.: ‘Stochastic optimization for unit commitment: a review’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 19131924.
    23. 23)
      • 23. Lorca, A., Sun, X.A.: ‘Multistage robust unit commitment with dynamic uncertainty sets and energy storage’, arXiv Prepr. arXiv1604.04890, 2016.
    24. 24)
      • 24. Jabr, R.: ‘Adjustable robust OPF with renewable energy sources’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 47424751.
    25. 25)
      • 25. Jabr, R.A., Karaki, S., Korbane, J.A.: ‘Robust multi-period OPF with storage and renewables’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 27902799.
    26. 26)
      • 26. Warrington, J., Goulart, P., Mariethoz, S., et al: ‘Policy-based reserves for power systems’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 44274437.
    27. 27)
      • 27. Dehghan, S., Amjady, N., Conejo, A.J.: ‘Adaptive robust transmission expansion planning using linear decision rules’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 40244034.
    28. 28)
      • 28. Chen, X., Zhang, Y.: ‘Uncertain linear programs: extended affinely adjustable robust counterparts’, Oper. Res., 2009, 57, (6), pp. 14691482.
    29. 29)
      • 29. Lorca, A., Sun, X.A., Litvinov, E., et al: ‘Multistage adaptive robust optimization for the unit commitment problem’, Oper. Res., 2016, 64, (1), pp. 3251.
    30. 30)
      • 30. Ben-Tal, A., Goryashko, A., Guslitzer, E., et al: ‘Adjustable robust solutions of uncertain linear programs’, Math. Program., 2004, 99, (2), pp. 351376.
    31. 31)
      • 31. Carrión, M., Arroyo, J.M.: ‘A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem’, Power Syst. IEEE Trans., 2006, 21, (3), pp. 13711378..
    32. 32)
      • 32. Bertsimas, D., Litvinov, E., Sun, X.A., et al: ‘Adaptive robust optimization for the security constrained unit commitment problem’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 5263..
    33. 33)
      • 33. Amjady, N., Aghaei, J., Shayanfar, H.A.: ‘Stochastic multiobjective market clearing of joint energy and reserves auctions ensuring power system securityIEEE Trans. Power Syst., 2009, 24, (4), pp. 18411854..
    34. 34)
      • 34. Grigg, C., Wong, P.: ‘The IEEE reliability test system – 1996 a report prepared by the reliability test system task force of the application of probability methods subcommittee’, IEEE Trans. Power Syst., 1999, 14, (3), pp. 10101020..
    35. 35)
      • 35. Elia Power System [Online]. Available at http://www.elia.be/en/grid-data/power-generation/wind-power.
    36. 36)
      • 36. Billinton, R.: ‘Power system reliability evaluation’ (Taylor & Francis, 1970).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1420
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1420
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address