access icon free Error reduction of phasor measurement unit data considering practical constraints

Wide area measurement system relies on phasor measurement unit (PMU) data to monitor, protect, and control high-voltage transmission networks. However, errors in instrument transformers (ITs) located at the inputs of a PMU can significantly degrade its output quality. This study proposes two methodologies for voltage and current transformers calibration using PMU data. The first method calibrates ITs using one good quality voltage measurement located at a tie-line. This method tolerates errors in both the ITs (which are to be estimated) as well as the PMUs. The second method attains the same objective as the first one, with the additional constraint that some portion of the data is unusable. Thus, the second method can be used even when the incoming data is intermittent.

Inspec keywords: power transmission protection; power transmission control; phasor measurement; instrument transformers; power supply quality; current transformers; potential transformers; calibration; voltage measurement

Other keywords: PMU data; quality voltage measurement; instrument transformers; phasor measurement unit data error reduction; current transformer calibration; high-voltage transmission network control; high-voltage transmission network monitoring; IT; wide area measurement system; voltage transformer calibration; high-voltage transmission network protection

Subjects: Transformers and reactors; Power supply quality and harmonics; Power system measurement and metering; Voltage measurement; Power system protection

References

    1. 1)
      • 22. Zhou, M., Centeno, V.A., Thorp, J.S., et al: ‘Calibrating instrument transformers with phasor measurements’, Elect. Power Compon. Syst., 2012, 40, (14), pp. 16051620.
    2. 2)
      • 3. Gol, M., Abur, A.: ‘A robust PMU based three-phase state estimator using modal decoupling’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 22922299.
    3. 3)
      • 4. Jones, K.D., Thorp, J.S., Gardner, R.M.: ‘Three-phase linear state estimation using phasor measurements’. Proc. IEEE Power Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013, pp. 15.
    4. 4)
      • 17. Callegaro, L., Cassiago, C., Gasparotto, E.: ‘On the calibration of direct current transformers (DCCT)’, IEEE Trans. Instrum. Meas., 2015, 64, (3), pp. 723728.
    5. 5)
      • 13. Hajnoroozi, A.A., Aminifar, F., Ayoubzadeh, H.: ‘Generating unit model validation and calibration through synchrophasor measurements’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 441449.
    6. 6)
      • 23. Wu, Z., Thomas, K., Sun, K., et al: ‘Three-phase instrument transformer calibration with synchronized phasor measurements’. Proc. IEEE Power and Energy Society Innovative Smart Grid Technologies (ISGT), Washington, DC, 16–20 January 2012, pp. 16.
    7. 7)
      • 30. The MathWorks Inc.: ‘MATLAB version 7.10.0’, (computer software), Natick, MA, 2010.
    8. 8)
      • 8. Bernabeu, E.E., Thorp, J.S., Centeno, V.A.: ‘Methodology for a security/dependability adaptive protection scheme based on data mining’, IEEE Trans. Power Deliv., 2012, 27, (1), pp. 104111.
    9. 9)
      • 1. Li, X., Scaglione, A., Hui, T.H.: ‘A framework for phasor measurement placement in hybrid state estimation via Gauss–Newton’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 824832.
    10. 10)
      • 28. Gao, F., Thorp, J.S., Pal, A., et al: ‘Dynamic state prediction based on auto-regressive (AR) model using PMU data’. Proc. IEEE Power Energy Conf. Illinois (PECI), Champaign, IL, 24–25 February 2012, pp. 15.
    11. 11)
      • 25. Pal, A., Chatterjee, P., Thorp, J.S., et al: ‘On-line calibration of voltage transformers using synchrophasor measurements’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 370380.
    12. 12)
      • 20. Shi, D., Tylavsky, D.J., Logic, N.: ‘An adaptive method for detection and correction of errors in PMU measurements’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 15751583.
    13. 13)
      • 24. Wu, Z.: ‘Synchronized phasor measurement applications in three-phase power systems’. PhD Dissertation, Bradley Dept. Elect. Comput. Eng., Virginia Tech, Blacksburg, 2013.
    14. 14)
      • 9. Pal, A., Thorp, J.S., Veda, S.S., et al: ‘Applying a robust control technique to damp low frequency oscillations in the WECC’, Int. J. Electr. Power Energy Syst., 2013, 44, (1), pp. 638645.
    15. 15)
      • 19. Tang, Y., Stenbakken, G.N., Goldstein, A.: ‘Calibration of phasor measurement unit at NIST’, IEEE Trans. Instrum. Meas., 2013, 62, (6), pp. 14171422.
    16. 16)
      • 11. Jones, K.D., Pal, A., Thorp, J.S.: ‘Methodology for performing synchrophasor data conditioning and validation’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 11211130.
    17. 17)
      • 29. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: ‘MATPOWER steady-state operations, planning and analysis tools for power systems research and education’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 1219.
    18. 18)
      • 27. ‘Advanced Systems for Power Engineering (ASPEN)’, available at http://www.aspeninc.com/web/.
    19. 19)
      • 15. Brandolini, A., Faifer, M., Ottoboni, R.: ‘A simple method for the calibration of traditional and electronic measurement current and voltage transformers’, IEEE Trans. Instrum. Meas., 2009, 58, (5), pp. 13451353.
    20. 20)
      • 12. Huang, Z., Du, P., Kosterev, D., et al: ‘Generator dynamic model validation and parameter calibration using phasor measurements at the point of connection’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 19391949.
    21. 21)
      • 16. So, E., Arseneau, R., Bennett, D., et al: ‘A current-comparator-based system for calibrating high-voltage current transformers under actual operating conditions’, IEEE Trans. Instrum. Meas., 2011, 60, (7), pp. 24492454.
    22. 22)
      • 31. IEEE Std. C57.13-2008: ‘IEEE standard requirements for instrument transformers’, July 2008, pp. c182.
    23. 23)
      • 10. Mishra, C., Pal, A., Centeno, V.A.: ‘Kalman-filter based recursive regression for three-phase line parameter estimation using phasor measurements’. Proc. IEEE Power Energy Society General Meeting, Denver, CO, 26–30 July 2015, pp. 15.
    24. 24)
      • 18. Pasini, G., Peretto, L., Roccato, P., et al: ‘Traceability of low-power voltage transformer for medium voltage application’, IEEE Trans. Instrum. Meas., 2014, 63, (12), pp. 28042812.
    25. 25)
      • 2. Chakhchoukh, Y., Vittal, V., Heydt, G.T.: ‘PMU based state estimation by integrating correlation’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 617626.
    26. 26)
      • 6. Pal, A., Singh, I., Bhargava, B.: ‘Stress assessment in power systems and its visualization using synchrophasor based metrics’. Proc. IEEE 2014 North American Power Symp. (NAPS), Pullman, WA, 7–9 September 2014, pp. 16.
    27. 27)
      • 26. IEEE Std. C37.118.2: ‘IEEE standard for synchrophasor data transfer for power systems’, December 2011, pp. 153.
    28. 28)
      • 7. Liu, C., Sun, K., Rather, Z.H., et al: ‘A systematic approach for dynamic security assessment and the corresponding preventive control scheme based on decision trees’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 717730.
    29. 29)
      • 21. Braun, J.P., Seigenthaler, S.: ‘Calibration of PMUs with a reference grade calibrator’. Proc. IEEE Conf. Precision Electromagnetic Meas. (CPEM), Rio de Janeiro, Brazil, 24–29 August 2014, pp. 678679.
    30. 30)
      • 5. Kaci, A., Kamwa, I., Dessaint, L.A., et al: ‘Synchrophasor data base-lining and mining for online monitoring of dynamic security limits’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 26812695.
    31. 31)
      • 14. Zoltan, I.: ‘Impedance synthesis [instrument transformer calibration]’. Proc. 18th IEEE Instrumentation Measurement Technology Conf., Budapest, Hungary, 21–23 May 2001, vol. 3, pp. 18721874.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1359
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1359
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading