access icon free Artificial intelligence-based short-circuit fault identifier for MT-HVDC systems

The most convenient solution to link faraway significant renewable energy sources (RESs) is the voltage-source converter multi-terminal high-voltage DC systems (MT-HVDC). However, to maintain system stability and continuity of supply, a rigid and fast fault locating technique is required. This study proposes a novel inherent travelling waves based short-circuit DC fault identifier, which accurately identifies both of the fault location and faulty pole in multiple numbers of cables in MT-HVDC system using a single current sensor. Both of a discrete wavelet examiner and a fuzzy-neural pattern recogniser precisely spot the faulty line and fault location based on the mutual effects of short-circuit initiated travelling waves between lines belonging to the same loop. A software toolbox is structured to illustrate the adequacy of the proposed artificial intelligence technique. This method is valuable to MT-HVDC administration centres, particularly those concerned with long-distance RES.

Inspec keywords: HVDC power convertors; power system stability; poles and towers; electric sensing devices; HVDC power transmission; discrete wavelet transforms; fuzzy neural nets; pattern recognition; power transmission faults; electric current measurement; power cables; fault location; power system identification; power engineering computing

Other keywords: artificial intelligence; inherent travelling wave; discrete wavelet examiner; stability; fuzzy-neural pattern recogniser; single current sensor; renewable energy source; MT-HVDC administration centre; fault locating technique; short-circuit DC fault identifier; software toolbox; RES; short-circuit fault identifier; multiterminal high-voltage DC system; cable; voltage-source converter

Subjects: Current measurement; Integral transforms; AC-DC power convertors (rectifiers); Sensing devices and transducers; Power line supports, insulators and connectors; Power cables; Neural computing techniques; d.c. transmission; Integral transforms; DC-AC power convertors (invertors); Power system control; Power engineering computing

References

    1. 1)
      • 12. Mokhberdoran, A., Leite, H.: ‘A directional protection strategy for multi-terminal VSC-HVDC grids’. 2016 IEEE 16th Int. Conf. Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016.
    2. 2)
      • 33. Memon, K.H., Lee, D.-H.: ‘Generalised fuzzy c-means clustering algorithm with local information’, IET Image Process., 2017, 11, (1), pp. 112.
    3. 3)
      • 28. Keskes, H., Braham, A., Lachiri, Z.: ‘Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet SVM’, Electr. Power Syst. Res., 2013, 97, pp. 151157.
    4. 4)
      • 29. Gilany, M., Ibrahim, D.K., Eldin, E.S.T.: ‘Traveling-wave-based fault-location scheme for multiend-aged underground cable system’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 8289.
    5. 5)
      • 21. Avdakovic, S., Nuhanovic, A., Kusljugic, M., et al: ‘Wavelet transform applications in power system dynamics’, Electr. Power Syst. Res., 2012, 83, pp. 237245.
    6. 6)
      • 25. Garia-Gracia, M., Montanes, A., El Halabi, N., et al: ‘High resistive zero-crossing instant faults detection and location scheme based on wavelet analysis’, Electr. Power Syst. Res., 2012, 92, pp. 138144.
    7. 7)
      • 45. Lu, J., Li, J., Li, W., et al: ‘A new approach to recognizing faulty lines in distribution systems based on traveling wave refraction and coupling’, Electr. Power Syst. Res., 2008, 78, pp. 353360.
    8. 8)
      • 47. Lin, S., He, Z.Y., Li, X.P., et al: ‘Travelling wave time–frequency characteristic-based fault location method for transmission lines’, IET Gener. Transm. Distrib., 2012, 6, (8), pp. 764772.
    9. 9)
      • 41. Jovcic, D., Lamont, L., Abbott, K.: ‘Control system design for VSC transmission’, Electr. Power Syst. Res., 2007, 77, pp. 721729.
    10. 10)
      • 38. Bisi, M., Goyal, N.K.: ‘Software development efforts prediction using artificial neural network’, IET Softw., 2016, 10, (3), pp. 6371.
    11. 11)
      • 48. Xu, L., Yao, L.: ‘DC voltage control and power dispatch of a multi-terminal HVDC system for integrating large offshore wind farms’, IET Renew. Power Gener., 2011, 5, (3), pp. 223233.
    12. 12)
      • 14. Wang, P., Li, Z., Zhang, X.-P., et al: ‘DC fault management for VSC MTDC system using delayed-auto-re-configuration scheme’. 11th IET Int. Conf. AC and DC Power Transmission, Birmingham, UK, 10–12 February 2015.
    13. 13)
      • 44. Latorre, H.F., Ghandhari, M., Söder, L.: ‘Active and reactive power control of a VSC-HVdc’, Electr. Power Syst. Res., 2008, 78, pp. 17561763.
    14. 14)
      • 2. Livermor, L., Liang, J., Ekanayake, J.: ‘MTDC VSC technology and its applications for wind power’. 2010 45th Int. Universities Power Engineering Conf. (UPEC), Cardiff, Wales, UK, September 2010.
    15. 15)
      • 15. Liu, J., Tai, N., Fan, C.: ‘Transient-voltage-based protection scheme for DC line faults in the multiterminal VSC-HVDC system’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 14831494.
    16. 16)
      • 49. Lin, J., Ming, J., Crookes, D.: ‘Robust face recognition using posterior union model based neural networks’, IET Comput. Vis., 2009, 3, (3), pp. 130142.
    17. 17)
      • 36. Son, H.S., Park, J.B., Joo, Y.H.: ‘Fuzzy c-means clustering-based smart tracking model for three-dimensional manoeuvring target including unknown acceleration input’, IET Radar Sonar Navig., 2013, 7, (6), pp. 623634.
    18. 18)
      • 43. Beerten, J., Cole, S., Belmans, R.: ‘Modeling of multi-terminal VSC HVDC systems with distributed DC voltage control’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 3442.
    19. 19)
      • 32. Cheng, J., Guan, M., Tang, L., et al: ‘Paralleled multi-terminal DC transmission line fault locating method based on travelling wave’, IET Gener. Transm. Distrib., 2014, 8, (12), pp. 20922101.
    20. 20)
      • 18. Barros, J., Diego, R.I., de Apraz, M.: ‘Applications of wavelets in electric power quality: voltage events’, Electr. Power Syst. Res., 2012, 88, pp. 130136.
    21. 21)
      • 23. Hajjar, A.A.: ‘A high speed non-communication protection scheme for power transmission lines based on wavelet transform’, Electr. Power Syst. Res., 2013, 96, pp. 194200.
    22. 22)
      • 40. Humayd, A.S.B., Bhattacharya, K.: ‘Comprehensive multi-year distribution system planning using back-propagation approach’, IET Gener. Transm. Distrib., 2013, 7, (12), pp. 14151425.
    23. 23)
      • 34. Lu, C., Xiao, S., Gu, X.: ‘Improving fuzzy c-means clustering algorithm based on a density-induced distance measure’, IET J. Eng., 2014, 2014, (4), pp. 13.
    24. 24)
      • 9. Tang, L., Ooi, B.: ‘Locating and isolating DC faults in multi-terminal DC systems’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 18771884.
    25. 25)
      • 42. Zhang, L., Harnefors, L., Nee, H.-P.: ‘Modeling and control of VSC-HVDC links connected to island systems’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 783792.
    26. 26)
      • 17. Hossam-Eldin, A., Lotfy, A., Elgamal, M., et al: ‘Combined traveling wave and fuzzy logic based fault location in multi-terminal HVDC systems’. 16th IEEE Int. Conf. Environment and Electrical Engineering (IEEE-EEEIC), Florence, Italy, 7–10 June 2016.
    27. 27)
      • 6. Lu, W., Ooi, B.: ‘Premium quality power park based on multi-terminal HVDC’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 978983.
    28. 28)
      • 4. Wang, S., Li, G., Zhou, M., et al: ‘Research on interconnecting offshore wind farms based on multi-terminal VSC-HVDC’. Int. Conf. Power System Technology, Zhejiang Province, China, 2010, pp. 17.
    29. 29)
      • 39. Websper, S., Dunn, R.W., Aggarwal, R.K., et al: ‘Feature extraction methods for neural network-based transmission line fault discrimination’, IEE Proc., Gener. Transm. Distrib., 1999, 146, (3), pp. 209216.
    30. 30)
      • 24. Li, S., Wang, P., Goel, L.: ‘Short-term load forecasting by wavelet transform and evolutionary extreme learning machine’, Electr. Power Syst. Res., 2015, 122, pp. 96103.
    31. 31)
      • 5. Lu, W., Ooi, B.: ‘Multi-terminal LVDC system for optimal acquisition of power in wind-farm using induction generators’, IEEE Trans. Power Electron., 2002, 17, (4), pp. 558563.
    32. 32)
      • 31. Krzysztof, G., Kowalik, R., Rasolomampionona, D., et al: ‘Traveling wave fault location in power transmission systems: an overview’, J. Electr. Syst., 2011, 7–3, pp. 287296.
    33. 33)
      • 11. Mobarez, M., Kashani, M.G., Chavan, G., et al: ‘A novel control approach for protection of multi-terminal VSC based HVDC transmission system against DC faults’. 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015.
    34. 34)
      • 10. De Kerf, K., Srivastava, K., Reza, M., et al: ‘Wavelet-based protection strategy for DC faults in multi-terminal VSC HVDC systems’, IET Gener. Transm. Distrib., 2011, 5, (4), pp. 496503.
    35. 35)
      • 27. Cunha, C.F.F.C., Carvalho, A.T., Petraglia, M.R., et al: ‘A new wavelet selection method for partial discharge denoising’, Electr. Power Syst. Res., 2015, 125, pp. 184195.
    36. 36)
      • 8. Yang, J., Fletcher, J., O'Reilly, J.: ‘Short-circuit and ground fault analyses and location in VSC-based DC network cables’, IEEE Trans. Power Electron., 2012, 59, (10), pp. 38273837.
    37. 37)
      • 26. Morsi, W.G.: ‘A wavelet-based approach for reactive power metering in modern three-phase grids considering time-varying power quality disturbances’, Electr. Power Syst. Res., 2012, 87, pp. 3138.
    38. 38)
      • 35. Zaixin, Z., Lizhi, C., Guangquan, C.: ‘Neighbourhood weighted fuzzy c-means clustering algorithm for image segmentation’, IET Image Process., 2014, 8, (3), pp. 150161.
    39. 39)
      • 37. Tarek, M., Ouda, O., Hamza, T.: ‘Robust cancellable biometrics scheme based on neural networks’, IET Biometrics, 2016, 5, (3), pp. 220228.
    40. 40)
      • 3. Rui, Q., Ohlen, C., Solvik, J., et al: ‘Design, operation and availability analysis of a multi-terminal HVDC grid – a case study of a possible offshore grid in the Norwegian sea’. IEEE Trondheim Power Tech, Bucharest, 2011, pp. 17.
    41. 41)
      • 46. Carvalho, F.S., Carneiro, S.Jr.: ‘Transient circumstances in CCVTs outputs and their effects on the detection of traveling waves’, Electr. Power Syst. Res., 2006, 76, pp. 616625.
    42. 42)
      • 30. Chen, Y., Liu, D., Xu, B.: ‘Wide-area traveling wave fault location system based on IEC61850’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 12071215.
    43. 43)
      • 7. Nanayakkara, O., Rajapakse, A., Wachal, R.: ‘Traveling-wave-based line fault location in star-connected multiterminal HVDC systems’, IEEE Trans Power Deliv., 2012, 27, (4), pp. 22862294.
    44. 44)
      • 22. Guillen, D., Idarraga-Ospina, G., Mombello, E.: ‘Partial discharge location in power transformer windings using the wavelet Laplace function’, Electr. Power Syst. Res., 2014, 111, pp. 7177.
    45. 45)
      • 20. Yusuff, A.A., Jimoh, A.A., Munda, J.L.: ‘Fault location in transmission lines based on stationary wavelet transform, determinant function feature and support vector regression’, Electr. Power Syst. Res., 2014, 110, pp. 7383.
    46. 46)
      • 13. Huu, D.N.: ‘A coordinated protection scheme of multi-terminal VSC-HVDC links under DC faults’. 2016 IEEE Innovative Smart Grid Technologies – Asia (ISGT-Asia), Melbourne, VIC, Australia, 28 November–1 December 2016.
    47. 47)
      • 50. Razmi, H., Teshnehlab, M., Shayanfar, H.A.: ‘Neural network based on a genetic algorithm for power system loading margin estimation’, IET Gener. Transm. Distrib., 2012, 6, (11), pp. 11531163.
    48. 48)
      • 1. NR Electric Co.: ‘World first five-terminal VSC-HVDC transmission project’. Available at www.nrelect.com, 2014.
    49. 49)
      • 16. Li, Y., Shi, X., Wang, F., et al: ‘DC fault protection of multi-terminal VSC-HVDC system with hybrid dc circuit breaker’. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016.
    50. 50)
      • 19. Zafar, T., Morsi, W.G.: ‘Power quality and the un-decimated wavelet transform: an analytic approach for time-varying disturbances’, Electr. Power Syst. Res., 2013, 96, pp. 201210.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1345
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1345
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading