http://iet.metastore.ingenta.com
1887

Stochastic optimal TCSC placement in power system considering high wind power penetration

Stochastic optimal TCSC placement in power system considering high wind power penetration

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Large-scale wind power integration will inevitably affect the dispatch of conventional resources, which could result in transmission line overload. Thyristor-controlled series capacitors (TCSCs) can be therefore installed in the transmission lines to change their series impedance so as to increase the loadability of the power system and reduce transmission losses. To address the highly uncertain characteristic of wind power output, a stochastic optimisation-based optimal TCSC planning model is proposed here. This model minimises the expected value of power loss cost and the investment cost of TCSC considering the probability of different scenarios, which are developed by using the classical copula theory, where the temporal interdependence between wind and load is taken into account. Mathematically, this optimal TCSC placement problem is formulated as a two-stage non-linear programme. Then the linearisation methods are adopted to transform the model to a mix-integer linear programme. Comprehensive case studies are carried out on the modified IEEE 57-bus test system, which demonstrates the effectiveness and efficiency of the proposed model.

References

    1. 1)
      • 1. Ziaee, O., Mousavi, O.A., Choobineh, F.: ‘Co-optimization of transmission expansion planning and TCSC placement considering the correlation between wind and demand scenarios’, IEEE Trans. Power Syst., 2017, PP, (99), pp. 11.
    2. 2)
      • 2. Helton, J.C., Johnson, J.D., Sallaberry, C.J., et al: ‘Survey of sampling-based methods for uncertainty and sensitivity analysis’, Reliab. Eng. Syst. Saf., 2006, 91, (10), pp. 11751209.
    3. 3)
      • 3. Hu, Z., Zhang, F., Li, B.: ‘Transmission expansion planning considering the deployment of energy storage systems’. 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, July 2012.
    4. 4)
      • 4. Gang, Q., Haozhong, C., Liangzhong, Y., et al: ‘Power transmission expansion planning considering large bulk power injection’. 8th Int. Conf. on Advances in Power System Control, Operation and Management (APSCOM 2009), Hong Kong, China, November 2009.
    5. 5)
      • 5. Hingorani, N.G.: ‘Flexible AC transmission’, IEEE Spectr., 1993, 30, (4), pp. 4045.
    6. 6)
      • 6. Xu, Z., Xue, Y., Wong, K.P.: ‘Recent advancements on smart grids in China’, Electr. Power Compon. Syst., 2014, 42, (3–4), pp. 251261.
    7. 7)
      • 7. Hingorani, N.G., Gyugyi, L.: ‘Understanding facts’ (Wiley-IEEE Press, Piscataway, NJ, USA, 2000).
    8. 8)
      • 8. Galiana, F., Almeida, K., Toussaint, M., et al: ‘Assessment and control of the impact of facts devices on power system performance’, IEEE Trans. Power Syst., 1996, 11, (4), pp. 19311936.
    9. 9)
      • 9. Perez, M.A., Messina, A.R., Fuerte-Esquivel, C.R.: ‘Application of facts devices to improve steady state voltage stability’. 2000 Power Engineering Society Summer Meeting (Cat. No. 00CH37134), Seattle, WA, USA, July 2000.
    10. 10)
      • 10. Rahimzadeh, S., Tavakoli, M., Viki, B.A.H.: ‘Simultaneous application of multi-type facts devices to the restructured environment: achieving both optimal number and location’, IET Gener. Transm. Distrib., 2010, 4, (3), pp. 349362.
    11. 11)
      • 11. L'Abbate, A., Migliavacca, G., Hager, U., et al: ‘The role of facts and HVDC in the future paneuropean transmission system development’. 9th IET Int. Conf. on AC and DC Power Transmission (ACDC 2010), London, UK, October 2010.
    12. 12)
      • 12. Brunet-Watson, M., Leighfield, J., America, P.N.: ‘Review of series compensation for transmission lines’, 2014.
    13. 13)
      • 13. Leonidaki, E., Georgiadis, D., Hatziargyriou, N.: ‘Decision trees for determination of optimal location and rate of series compensation to increase power system loading margin’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 13031310.
    14. 14)
      • 14. Ashpazi, M.A., Mohammadi-Ivatloo, B., Zare, K., et al: ‘Probabilistic allocation of thyristor-controlled phase shifting transformer for transient stability enhancement of electric power system’, IETE J. Res., 2015, 61, (4), pp. 382391.
    15. 15)
      • 15. Duan, C., Fang, W., Jiang, L., et al: ‘Facts devices allocation via sparse optimization’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 13081319.
    16. 16)
      • 16. Gerbex, S., Cherkaoui, R., Germond, A.J.: ‘Optimal location of multi-type facts devices in a power system by means of genetic algorithms’, IEEE Trans. Power Syst., 2001, 16, (3), pp. 537544.
    17. 17)
      • 17. Saravanan, M., Slochanal, S.M.R., Venkatesh, P., et al: ‘Application of particle swarm optimization technique for optimal location of facts devices considering cost of installation and system loadability’, Electr. Power Syst. Res., 2007, 77, (3), pp. 276283.
    18. 18)
      • 18. Yang, G.Y., Hovland, G., Majumder, R., et al: ‘TCSC allocation based on line flow based equations via mixed-integer programming’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 22622269.
    19. 19)
      • 19. Lima, F.G., Galiana, F.D., Kockar, I., et al: ‘Phase shifter placement in large-scale systems via mixed integer linear programming’, IEEE Trans. Power Syst., 2003, 18, (3), pp. 10291034.
    20. 20)
      • 20. Ziaee, O., Choobineh, F.: ‘Optimal location-allocation of TCSCS and transmission switch placement under high penetration of wind power’, IEEE Trans. Power Syst., 2016, PP, (99), pp. 11.
    21. 21)
      • 21. Hemmati, R., Hooshmand, R.-A., Khodabakhshian, A.: ‘Comprehensive review of generation and transmission expansion planning’, IET Gener. Transm. Distrib., 2013, 7, (9), pp. 955964.
    22. 22)
      • 22. De Oliveira, E., Lima, J.M., De Almeida, K.: ‘Allocation of facts devices in hydrothermal systems’, IEEE Trans. Power Syst., 2000, 15, (1), pp. 276282.
    23. 23)
      • 23. Floudas, C.A.: Nonlinear and mixed-integer optimization: fundamentals and applications' (Oxford University Press, Oxford, UK, 1995).
    24. 24)
      • 24. Charytoniuk, W., Chen, M., Kotas, P., et al: ‘Demand forecasting in power distribution systems using nonparametric probability density estimation’, IEEE Trans. Power Syst., 1999, 14, (4), pp. 12001206.
    25. 25)
      • 25. Mann, N.R., Singpurwalla, N.D., Schafer, R.E.: ‘Methods for statistical analysis of reliability and life data’, 1974.
    26. 26)
      • 26. Glasserman, P.: Monte Carlo methods in financial engineering' (Springer Science & Business Media, New York, NY, USA, 2013).
    27. 27)
      • 27. Morales, J.M., Minguez, R., Conejo, A.J.: ‘A methodology to generate statistically dependent wind speed scenarios’, Appl. Energy, 2010, 87, (3), pp. 843855.
    28. 28)
      • 28. Pinson, P., Madsen, H., Nielsen, H.A., et al: ‘From probabilistic forecasts to statistical scenarios of short-term wind power production’, Wind Energy, 2009, 12, (1), pp. 5162.
    29. 29)
      • 29. Villanueva, D., Feijóo, A., Pazos, J.L.: ‘Simulation of correlated wind speed data for economic dispatch evaluation’, IEEE Trans. Sustain. Energy, 2012, 3, (1), pp. 142149.
    30. 30)
      • 30. Pinson, P., Girard, R.: ‘Evaluating the quality of scenarios of short-term wind power generation’, Appl. Energy, 2012, 96, pp. 1220.
    31. 31)
      • 31. Growe-Kuska, N., Heitsch, H., Romisch, W.: ‘Scenario reduction and scenario tree construction for power management problems’. 2003 IEEE Power Tech Conf. Proc., Bologna, 2003.
    32. 32)
      • 32. Rider, M., Garcia, A., Romero, R.: ‘Power system transmission network expansion planning using AC model’, IET Gener. Transm. Distrib., 2007, 1, (5), pp. 731742.
    33. 33)
      • 33. Chen, J., Thorp, J.: ‘A reliability study of transmission system protection via a hidden failure DC load flow model’, 2002.
    34. 34)
      • 34. Overbye, T.J., Xu, C., Yan, S.: ‘A comparison of the AC and DC power flow models for LMP calculations’. 2004 Proc. of the 37th Annual Hawaii Int. Conf. on System Sciences, Big Island, HI, USA, January 2004.
    35. 35)
      • 35. Ping, Y., Sekar, A.: ‘Analysis of radial distribution systems with embedded series facts devices using a fast line flow-based algorithm’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 17751782.
    36. 36)
      • 36. Lofberg, J.: ‘Yalmip: a toolbox for modeling and optimization in Matlab’. 2004 IEEE Int. Conf. on Robotics and Automation (IEEE Cat. No. 04CH37508), New Orleans, LA, USA, September 2004.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1320
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1320
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address