http://iet.metastore.ingenta.com
1887

Adaptive directional overcurrent relaying scheme for meshed distribution networks

Adaptive directional overcurrent relaying scheme for meshed distribution networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Distribution networks are evolving into active meshed networks with bidirectional power flow as the penetration of distributed generation (DG) sources is increasing. This necessitates the use of directional relaying schemes in these emerging active distribution networks. However, conventional directional overcurrent (OC) protection will not be adequate to protect these networks against the stochastic nature of renewable DGs and the changing network architectures. Hence, this study proposes an adaptive directional OC relay algorithm that determines optimal protection settings according to varying fault currents and paths induced by the DGs in active meshed distribution networks. The proposed algorithm consists of a two-phase approach that deduces: (i) optimal floating current settings through a fuzzy decision-making module, and (ii) optimal floating time settings through an optimisation algorithm. Extensive case studies are implemented on the modified power distribution networks of IEEE 14-bus and IEEE 30-bus by varying the type, location, and size of DGs. The results validate the ability of the proposed protection scheme to capture the uncertainties of the DGs and determine optimal protection settings, while ensuring minimal operating time.

References

    1. 1)
      • 1. Nair, N.K.C., Bowe, N.: ‘Enabling future meshed operation for distribution networks’. Proc. CIGRE, Paris, France, August 2012.
    2. 2)
      • 2. Zeineldin, H.H., Mohamed, Y.A.B.I., Khadkikar, V., et al: ‘A protection coordination index for evaluating distributed generation impacts on protection for meshed distribution systems’, IEEE Trans. Smart Grid, 2013, 4, (3), pp. 15231532.
    3. 3)
      • 3. Conti, S.: ‘Analysis of distribution network protection issues in presence of dispersed generation’, Electr. Power Syst. Res., 2009, 79, pp. 4956.
    4. 4)
      • 4. Zeineldin, H.H., Sharaf, H.M.M., Ibrahim, D.K., et al: ‘Optimal protection coordination for meshed distribution systems with DG using dual setting directional over-current relays’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 115123.
    5. 5)
      • 5. Urdaneta, A.J., Nadira, R., Perez Jimenez, L.G.: ‘Optimal coordination of directional overcurrent relays in interconnected power systems’, IEEE Trans. Power Deliv., 1988, 3, (3), pp. 903911.
    6. 6)
      • 6. Chattopadhyay, B., Sachdev, M.S., Sidhu, T.S.: ‘An on-line relay coordination algorithm for adaptive protection using linear programming technique’, IEEE Trans. Power Deliv., 1996, 11, (1), pp. 165173.
    7. 7)
      • 7. Bedekar, P., Bhide, S., Kale, V.: ‘Optimum coordination of overcurrent relays in distribution systems using dual simplex method’. Proc. IEEE Emerging Trends in Engineering and Technology, Nagpur, India, December 2009, pp. 555559.
    8. 8)
      • 8. Urdaneta, A.J., Pérez, L.G., Gómez, J.F., et al: ‘Presolve analysis and interior point solutions of the linear programming coordination problem of directional overcurrent relays’, Int. J. Electr. Power Energy Syst., 2001, 23, (8), pp. 819825.
    9. 9)
      • 9. Bedekar, P.P., Bhide, S.R.: ‘Optimum coordination of directional overcurrent relays using the hybrid GA-NLP approach’, IEEE Trans. Power Deliv., 2011, 26, (1), pp. 109119.
    10. 10)
      • 10. Mansour, M. M., Mekhamer, S. F., El-Kharbawe, N.: ‘A modified particle swarm optimizer for the coordination of directional overcurrent relays’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 14001410.
    11. 11)
      • 11. Moirangthem, J., Krishnanand, K.R., Dash, S.S., et al: ‘Adaptive differential evolution algorithm for solving non-linear coordination problem of directional overcurrent relays’, IET Gener. Transm. Distrib., 2013, 7, (4), pp. 329336.
    12. 12)
      • 12. Singh, M.: ‘Protection coordination in distribution systems with and without distributed energy resources – a review’, Prot. Control Mod. Power Syst., 2017, 2, (1), pp. 117.
    13. 13)
      • 13. El-Khattam, W., Sidhu, T.: ‘Restoration of directional overcurrent relay coordination in distributed generation systems utilizing fault current limiter’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 576585.
    14. 14)
      • 14. Chabanloo, R.M., Abyaneh, H.A., Agheli, A., et al: ‘Overcurrent relays coordination considering transient behaviour of fault current limiter and distributed generation in distribution power network’, IET Gener. Transm. Distrib., 2011, 5, (9), pp. 903911.
    15. 15)
      • 15. El-Khattam, W., Sidhu, T.: ‘Resolving the impact of distributed renewable generation on directional overcurrent relay coordination: a case study’, IET Renew. Power Gener., 2009, 3, (4), pp. 415425.
    16. 16)
      • 16. Singh, M., Panigrahi, B.K., Abhyankar, A.R.: ‘A hybrid protection scheme to mitigate the effect of distributed generation on relay coordination in distribution system’. Proc. IEEE Power & Energy Society General Meeting, Vancouver, BC, 2013, pp. 15.
    17. 17)
      • 17. Najy, W.K.A., Zeineldin, H.H., Woon, W.L.: ‘Optimal protection coordination for microgrids with grid-connected and islanded capability’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 16681677.
    18. 18)
      • 18. Saleh, K.A., Zeineldin, H.H., Al-Hinai, A., et al: ‘Optimal coordination of directional overcurrent relays using a new time-current-voltage characteristic’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 537544.
    19. 19)
      • 19. Sharaf, H.M.M., Zeineldin, H.H., Ibrahim, D.K., et al: ‘A proposed coordination strategy for meshed distribution systems with DGs considering user-defined characteristics of directional inverse time overcurrent relays’, Electr. Power Energy Syst., 2015, 65, pp. 4958.
    20. 20)
      • 20. Huchel, L., Zeineldin, H.H.: ‘Planning the coordination of directional overcurrent relays for distribution systems considering DG’, IEEE Trans. Smart Grid, 2016, 7, (3), pp. 16421649.
    21. 21)
      • 21. Shih, M. Y., Conde, A., Leonowicz, Z., et al: ‘An adaptive overcurrent coordination scheme to improve relay sensitivity and overcome drawbacks due to distributed generation in smart grids’, IEEE Trans. Ind. Appl., 2017, 53, (6), pp. 52175228.
    22. 22)
      • 22. Purwar, E., Vishwakarma, D. N., Singh, S. P.: ‘A novel constraints reduction based optimal relay coordination method considering variable operational status of distribution system with DGs’, IEEE Trans. Smart Grid, 2017, DOI: 10.1109/TSG.2017.2754399.
    23. 23)
      • 23. Yazdanpanahi, H., Li, Y.W., Xu, W.: ‘A new control strategy to mitigate the impact of inverter-based DGs on protection system’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 14271436.
    24. 24)
      • 24. Haj-Ahmed, M.A., Illindala, M.S.: ‘The influence of inverter-based DGs and their controllers on distribution network protection’, IEEE Trans. Ind. Appl., 2014, 50, (4), pp. 29282937.
    25. 25)
      • 25. Singh, M., Vishnuvardhan, T., Srivani, S. G.: ‘Adaptive protection coordination scheme for power networks under penetration of distributed energy resources’, IET Gener., Transm. Distrib., 2016, 10, (15), pp. 39193929.
    26. 26)
      • 26. Shen, S., Lin, D., Wang, H., et al: ‘An adaptive protection scheme for distribution systems with DGs based on optimized Thevenin equivalent parameters estimation’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 411419.
    27. 27)
      • 27. Kumar, D.S., Srinivasan, D., Reindl, T.: ‘A fast and scalable protection scheme for distribution networks with distributed generation’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 6775.
    28. 28)
      • 28. Darwish, H.A., Fikri, M.: ‘Practical considerations for recursive DFT implementation in numerical relays’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 4249.
    29. 29)
      • 29. Mendel, J. M.: ‘Uncertain rule-based fuzzy logic systems: introduction and new directions’ (Prentice Hall PTR, Upper Saddle River, 2001), pp. 131184.
    30. 30)
      • 30. Power Systems Test Case Archive. Available at http://www.ee.washington.edu/research/pstca/.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1279
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1279
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address