http://iet.metastore.ingenta.com
1887

Adaptive directional overcurrent relaying scheme for meshed distribution networks

Adaptive directional overcurrent relaying scheme for meshed distribution networks

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Distribution networks are evolving into active meshed networks with bidirectional power flow as the penetration of distributed generation (DG) sources is increasing. This necessitates the use of directional relaying schemes in these emerging active distribution networks. However, conventional directional overcurrent (OC) protection will not be adequate to protect these networks against the stochastic nature of renewable DGs and the changing network architectures. Hence, this study proposes an adaptive directional OC relay algorithm that determines optimal protection settings according to varying fault currents and paths induced by the DGs in active meshed distribution networks. The proposed algorithm consists of a two-phase approach that deduces: (i) optimal floating current settings through a fuzzy decision-making module, and (ii) optimal floating time settings through an optimisation algorithm. Extensive case studies are implemented on the modified power distribution networks of IEEE 14-bus and IEEE 30-bus by varying the type, location, and size of DGs. The results validate the ability of the proposed protection scheme to capture the uncertainties of the DGs and determine optimal protection settings, while ensuring minimal operating time.

References

    1. 1)
      • N.K.C. Nair , N. Bowe .
        1. Nair, N.K.C., Bowe, N.: ‘Enabling future meshed operation for distribution networks’. Proc. CIGRE, Paris, France, August 2012.
        . Proc. CIGRE
    2. 2)
      • H.H. Zeineldin , Y.A.B.I. Mohamed , V. Khadkikar .
        2. Zeineldin, H.H., Mohamed, Y.A.B.I., Khadkikar, V., et al: ‘A protection coordination index for evaluating distributed generation impacts on protection for meshed distribution systems’, IEEE Trans. Smart Grid, 2013, 4, (3), pp. 15231532.
        . IEEE Trans. Smart Grid , 3 , 1523 - 1532
    3. 3)
      • S. Conti .
        3. Conti, S.: ‘Analysis of distribution network protection issues in presence of dispersed generation’, Electr. Power Syst. Res., 2009, 79, pp. 4956.
        . Electr. Power Syst. Res. , 49 - 56
    4. 4)
      • H.H. Zeineldin , H.M.M. Sharaf , D.K. Ibrahim .
        4. Zeineldin, H.H., Sharaf, H.M.M., Ibrahim, D.K., et al: ‘Optimal protection coordination for meshed distribution systems with DG using dual setting directional over-current relays’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 115123.
        . IEEE Trans. Smart Grid , 1 , 115 - 123
    5. 5)
      • A.J. Urdaneta , R. Nadira , L.G. Perez Jimenez .
        5. Urdaneta, A.J., Nadira, R., Perez Jimenez, L.G.: ‘Optimal coordination of directional overcurrent relays in interconnected power systems’, IEEE Trans. Power Deliv., 1988, 3, (3), pp. 903911.
        . IEEE Trans. Power Deliv. , 3 , 903 - 911
    6. 6)
      • B. Chattopadhyay , M.S. Sachdev , T.S. Sidhu .
        6. Chattopadhyay, B., Sachdev, M.S., Sidhu, T.S.: ‘An on-line relay coordination algorithm for adaptive protection using linear programming technique’, IEEE Trans. Power Deliv., 1996, 11, (1), pp. 165173.
        . IEEE Trans. Power Deliv. , 1 , 165 - 173
    7. 7)
      • P. Bedekar , S. Bhide , V. Kale .
        7. Bedekar, P., Bhide, S., Kale, V.: ‘Optimum coordination of overcurrent relays in distribution systems using dual simplex method’. Proc. IEEE Emerging Trends in Engineering and Technology, Nagpur, India, December 2009, pp. 555559.
        . Proc. IEEE Emerging Trends in Engineering and Technology , 555 - 559
    8. 8)
      • A.J. Urdaneta , L.G. Pérez , J.F. Gómez .
        8. Urdaneta, A.J., Pérez, L.G., Gómez, J.F., et al: ‘Presolve analysis and interior point solutions of the linear programming coordination problem of directional overcurrent relays’, Int. J. Electr. Power Energy Syst., 2001, 23, (8), pp. 819825.
        . Int. J. Electr. Power Energy Syst. , 8 , 819 - 825
    9. 9)
      • P.P. Bedekar , S.R. Bhide .
        9. Bedekar, P.P., Bhide, S.R.: ‘Optimum coordination of directional overcurrent relays using the hybrid GA-NLP approach’, IEEE Trans. Power Deliv., 2011, 26, (1), pp. 109119.
        . IEEE Trans. Power Deliv. , 1 , 109 - 119
    10. 10)
      • M. M. Mansour , S. F. Mekhamer , N. El-Kharbawe .
        10. Mansour, M. M., Mekhamer, S. F., El-Kharbawe, N.: ‘A modified particle swarm optimizer for the coordination of directional overcurrent relays’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 14001410.
        . IEEE Trans. Power Deliv. , 3 , 1400 - 1410
    11. 11)
      • J. Moirangthem , K.R. Krishnanand , S.S. Dash .
        11. Moirangthem, J., Krishnanand, K.R., Dash, S.S., et al: ‘Adaptive differential evolution algorithm for solving non-linear coordination problem of directional overcurrent relays’, IET Gener. Transm. Distrib., 2013, 7, (4), pp. 329336.
        . IET Gener. Transm. Distrib. , 4 , 329 - 336
    12. 12)
      • M. Singh .
        12. Singh, M.: ‘Protection coordination in distribution systems with and without distributed energy resources – a review’, Prot. Control Mod. Power Syst., 2017, 2, (1), pp. 117.
        . Prot. Control Mod. Power Syst. , 1 , 1 - 17
    13. 13)
      • W. El-Khattam , T. Sidhu .
        13. El-Khattam, W., Sidhu, T.: ‘Restoration of directional overcurrent relay coordination in distributed generation systems utilizing fault current limiter’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 576585.
        . IEEE Trans. Power Deliv. , 2 , 576 - 585
    14. 14)
      • R.M. Chabanloo , H.A. Abyaneh , A. Agheli .
        14. Chabanloo, R.M., Abyaneh, H.A., Agheli, A., et al: ‘Overcurrent relays coordination considering transient behaviour of fault current limiter and distributed generation in distribution power network’, IET Gener. Transm. Distrib., 2011, 5, (9), pp. 903911.
        . IET Gener. Transm. Distrib. , 9 , 903 - 911
    15. 15)
      • W. El-Khattam , T. Sidhu .
        15. El-Khattam, W., Sidhu, T.: ‘Resolving the impact of distributed renewable generation on directional overcurrent relay coordination: a case study’, IET Renew. Power Gener., 2009, 3, (4), pp. 415425.
        . IET Renew. Power Gener. , 4 , 415 - 425
    16. 16)
      • M. Singh , B.K. Panigrahi , A.R. Abhyankar .
        16. Singh, M., Panigrahi, B.K., Abhyankar, A.R.: ‘A hybrid protection scheme to mitigate the effect of distributed generation on relay coordination in distribution system’. Proc. IEEE Power & Energy Society General Meeting, Vancouver, BC, 2013, pp. 15.
        . Proc. IEEE Power & Energy Society General Meeting , 1 - 5
    17. 17)
      • W.K.A. Najy , H.H. Zeineldin , W.L. Woon .
        17. Najy, W.K.A., Zeineldin, H.H., Woon, W.L.: ‘Optimal protection coordination for microgrids with grid-connected and islanded capability’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 16681677.
        . IEEE Trans. Ind. Electron. , 4 , 1668 - 1677
    18. 18)
      • K.A. Saleh , H.H. Zeineldin , A. Al-Hinai .
        18. Saleh, K.A., Zeineldin, H.H., Al-Hinai, A., et al: ‘Optimal coordination of directional overcurrent relays using a new time-current-voltage characteristic’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 537544.
        . IEEE Trans. Power Deliv. , 2 , 537 - 544
    19. 19)
      • H.M.M. Sharaf , H.H. Zeineldin , D.K. Ibrahim .
        19. Sharaf, H.M.M., Zeineldin, H.H., Ibrahim, D.K., et al: ‘A proposed coordination strategy for meshed distribution systems with DGs considering user-defined characteristics of directional inverse time overcurrent relays’, Electr. Power Energy Syst., 2015, 65, pp. 4958.
        . Electr. Power Energy Syst. , 49 - 58
    20. 20)
      • L. Huchel , H.H. Zeineldin .
        20. Huchel, L., Zeineldin, H.H.: ‘Planning the coordination of directional overcurrent relays for distribution systems considering DG’, IEEE Trans. Smart Grid, 2016, 7, (3), pp. 16421649.
        . IEEE Trans. Smart Grid , 3 , 1642 - 1649
    21. 21)
      • M. Y. Shih , A. Conde , Z. Leonowicz .
        21. Shih, M. Y., Conde, A., Leonowicz, Z., et al: ‘An adaptive overcurrent coordination scheme to improve relay sensitivity and overcome drawbacks due to distributed generation in smart grids’, IEEE Trans. Ind. Appl., 2017, 53, (6), pp. 52175228.
        . IEEE Trans. Ind. Appl. , 6 , 5217 - 5228
    22. 22)
      • E. Purwar , D. N. Vishwakarma , S. P. Singh .
        22. Purwar, E., Vishwakarma, D. N., Singh, S. P.: ‘A novel constraints reduction based optimal relay coordination method considering variable operational status of distribution system with DGs’, IEEE Trans. Smart Grid, 2017, DOI: 10.1109/TSG.2017.2754399.
        . IEEE Trans. Smart Grid
    23. 23)
      • H. Yazdanpanahi , Y.W. Li , W. Xu .
        23. Yazdanpanahi, H., Li, Y.W., Xu, W.: ‘A new control strategy to mitigate the impact of inverter-based DGs on protection system’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 14271436.
        . IEEE Trans. Smart Grid , 3 , 1427 - 1436
    24. 24)
      • M.A. Haj-Ahmed , M.S. Illindala .
        24. Haj-Ahmed, M.A., Illindala, M.S.: ‘The influence of inverter-based DGs and their controllers on distribution network protection’, IEEE Trans. Ind. Appl., 2014, 50, (4), pp. 29282937.
        . IEEE Trans. Ind. Appl. , 4 , 2928 - 2937
    25. 25)
      • M. Singh , T. Vishnuvardhan , S. G. Srivani .
        25. Singh, M., Vishnuvardhan, T., Srivani, S. G.: ‘Adaptive protection coordination scheme for power networks under penetration of distributed energy resources’, IET Gener., Transm. Distrib., 2016, 10, (15), pp. 39193929.
        . IET Gener., Transm. Distrib. , 15 , 3919 - 3929
    26. 26)
      • S. Shen , D. Lin , H. Wang .
        26. Shen, S., Lin, D., Wang, H., et al: ‘An adaptive protection scheme for distribution systems with DGs based on optimized Thevenin equivalent parameters estimation’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 411419.
        . IEEE Trans. Power Deliv. , 1 , 411 - 419
    27. 27)
      • D.S. Kumar , D. Srinivasan , T. Reindl .
        27. Kumar, D.S., Srinivasan, D., Reindl, T.: ‘A fast and scalable protection scheme for distribution networks with distributed generation’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 6775.
        . IEEE Trans. Power Deliv. , 1 , 67 - 75
    28. 28)
      • H.A. Darwish , M. Fikri .
        28. Darwish, H.A., Fikri, M.: ‘Practical considerations for recursive DFT implementation in numerical relays’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 4249.
        . IEEE Trans. Power Deliv. , 1 , 42 - 49
    29. 29)
      • J. M. Mendel . (2001)
        29. Mendel, J. M.: ‘Uncertain rule-based fuzzy logic systems: introduction and new directions’ (Prentice Hall PTR, Upper Saddle River, 2001), pp. 131184.
        .
    30. 30)
      • 30. Power Systems Test Case Archive. Available at http://www.ee.washington.edu/research/pstca/.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1279
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1279
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address