Analysis and control of tundish induction heating power supply using modular multilevel converter

Analysis and control of tundish induction heating power supply using modular multilevel converter

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Modular multilevel converters (MMCs) provide advantages to reach medium-voltage operation increasing the power level in industrial applications. In this study, a tundish induction heating power supply based MMC (MMC-TIHPS) is investigated for heating molten steel. The equivalent model of MMC-TIHPS is established and the energy in horizontal and vertical directions are analysed. The heating control for molten steel consists of temperature increasing and constant temperature processes (alternatively called transient-state and steady-state operation). The main contribution of this study is to propose a direct power feedforward control based load current feedforward strategy for TIHPS. With this strategy, TIHPS can be controlled operating with full power to heat molten steel in transient state and guarantee the insulation effectiveness in steady state. Proper parameters of controllers are designed. Experimental results are conducted to validate the feasibility of MMC-TIHPS and the effectiveness of the proposed control method.


    1. 1)
      • 1. Davies, J., Simpson, P.: ‘Induction heating handbook’ (McGraw-Hill, New York, NY, USA, 1979).
    2. 2)
      • 2. Brown, G.H., Hoyler, C.N., Bierwirth, R.A.: ‘Theory and application of radio-frequency heating’ (Van Nostrand, New York, NY, USA, 1947).
    3. 3)
      • 3. Rudnev, V., Loveless, D., Cook, R., et al: ‘Handbook of induction heating’ (Marcel Dekker, New York, NY, USA, 2003).
    4. 4)
      • 4. Chakrabarti, A., Chakraborty, A., Sadhu, P.K.: ‘A fuzzy self-tuning pid controller with a derivative filter for power control in induction heating systems’, J. Power Electron., 2017, 17, (6), pp. 15771586.
    5. 5)
      • 5. Lucia, O., Sarnago, H., Burdio, J.M.: ‘Soft-stop optimal trajectory control for improved performance of the series-resonant multiinverter for domestic induction heating applications’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 62516259.
    6. 6)
      • 6. Norões Maia, A.C., Jacobina, C.B.: ‘Single-phase ac–dc–ac topology for grid overvoltage and voltage harmonic mitigation’, IET Power Electron., 2017, 10, (12), pp. 16261637.
    7. 7)
      • 7. Jacobina, C.B., de Queiroz, A.P.D., Maia, A.C.N., et al: ‘Ac–dc–ac multilevel converters based on three-leg converters’. Proc. IEEE Energy Conversion Congress and Exposition Conf. (ECCE), Denver, CO, USA, September 2013, pp. 53125319.
    8. 8)
      • 8. Qin, Z., Loh, P.C., Blaabjerg, F.: ‘Modulation schemes with enhanced switch thermal distribution for single-phase ac–dc–ac reduced-switch converters’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 33023313.
    9. 9)
      • 9. Ramaprabha, R., Ramya, G.: ‘Implementation of photovoltaic fed single phase nine level hybrid cascaded modular multilevel inverter with reduced number of devices’. Proc. IEEE Int. Conf. on Power Electronics and Drive Systems (PEDS), Honolulu, HI, USA, December 2017, pp. 493496.
    10. 10)
      • 10. Alishah, R.S., Nazarpour, D., Hosseini, S.H., et al: ‘DC circulating current for capacitor voltage balancing in modular multilevel matrix converter’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 256269.
    11. 11)
      • 11. Yılmaz, I, Ermis, M., Çadirci, I.: ‘Medium-Frequency induction melting furnace as a load on the power system’, IEEE Trans. Ind. Appl., 2012, 48, (4), pp. 12031214.
    12. 12)
      • 12. Franquelo, L., Rodriguez, J., Leon, J., et al: ‘The age of multilevel converters arrives’, IEEE Trans. Ind. Electron., 2008, 2, (2), pp. 2839.
    13. 13)
      • 13. Rodriguez, J., Lai, J.-S., Peng, F.: ‘Multilevel inverters: A survey of topologies, controls, and applications’, IEEE Trans. Ind. Electron., 2002, 49, (4), pp. 724738.
    14. 14)
      • 14. Korn, A.J., Winkelnkemper, M., Steimer, P., et al: ‘Direct modular multi-level converter for gearless low-speed drives’. Proc. European Power Electronics Application Conf., Birmingham, UK, September 2011, pp. 17.
    15. 15)
      • 15. Rodriguez, J., Bernet, S., Wu, B., et al: ‘Multilevel voltage-source-converter topologies for industrial medium-voltage drives’, IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 29302945.
    16. 16)
      • 16. Allebrod, S., Hamerski, R., Marquardt, R.: ‘New transformerless, scalable modular multilevel converters for HVDC-transmission’. Proc. IEEE Power Electronics Specialists Conf., Rhodes, Greece, June 2008, pp. 174179.
    17. 17)
      • 17. Vasiladiotis, M., Cherix, N., Rufer, A.: ‘Operation and control of single-to-three-phase direct ac/ac modular multilevel converters under asymmetric grid conditions’. Proc. Int. Power Electronics and ECCE Asia Conf., Seoul, South Korea, June 2015, pp. 10611066.
    18. 18)
      • 18. Haridas, K., Khandelwal, S., Das, A.: ‘Three phase to single phase modular multilevel converter using full bridge cells’. Proc. IEEE Int. Conf. on Power Electronics and Drive Systems (PEDS), Trivandrum, India, December 2016, pp. 15.
    19. 19)
      • 19. Xu, Q., Ma, F., Luo, A., et al: ‘Hierarchical direct power control of modular multilevel converter for tundish heating’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 79197929.
    20. 20)
      • 20. Zu, L., Meng, H., Zhi, X.: ‘Coupled numerical simulation of fluid field and temperature field in five-strand tundish of continuous casting’. Proc. Int. Electric Information and Control Engineering Conf., Wuhan, China, April 2011, pp. 251255.
    21. 21)
      • 21. Suzuki, I.: ‘Development of tundish induction heater for high quality continuously cast blooms’. Proc. the Steelmak Conf., Toronto, Canada, 1988, pp. 125131.
    22. 22)
      • 22. Arredondo, V., Perez, M.A., Espinoza, J.R.: ‘Capacitor voltage ripple control based on decoupled power analysis in MMC’. Proc. IEEE Int. Compatibility, Power Electronics and Power Engineering Conf. (CPE-POWERENG), Cadiz, Spain, April 2017, pp. 544549.
    23. 23)
      • 23. Zhang, Y., Qu, C., Cao, J.: ‘Performance improvement of direct power control of PWM rectifier under unbalanced network’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 23192328.
    24. 24)
      • 24. Lei, M., Li, Y., Li, Z., et al: ‘A single-phase five-branch modular multilevel converter for direct AC/AC equal frequency conversion’. Proc. IEEE Transportation Electrification Conf. and Expo, Asia-Pacific (ITEC Asia-Pacific), Harbin, China, August 2017, pp. 16.
    25. 25)
      • 25. Lizana, R., Perez, M.A., Arancibia, D., et al: ‘Decoupled current model and control of modular multilevel converters’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 53825392.
    26. 26)
      • 26. Perez, M.A., Rodriguez, J., Fuentes, E.J., et al: ‘Predictive control of AC–AC modular multilevel converters’, IEEE Trans. Ind. Electron., 2012, 59, (7), pp. 28322839.

Related content

This is a required field
Please enter a valid email address