access icon free Alternative modes of operation for wind energy conversion systems and the generalised Lambert W-function

When a wind energy conversion system (WECS) based on a doubly fed induction generator is operating in a different mode than maximum power tracking, there exist two different modes of operation. Here, it is shown that such modes satisfy the torque balance condition between the WECS and the electric network, which is described by a transcendental equation in terms of the desired angular velocities. The analytic solution to such equation is the newly found generalised Lambert W-function. Using a real WECS, the authors make an analysis of the lower and upper torque modes of operation. Finally, the authors propose an effective formula to estimate the upper solution which is universally applicable to this class of WECS.

Inspec keywords: angular velocity; torque; asynchronous generators; wind power plants; maximum power point trackers

Other keywords: upper torque modes; doubly fed induction generator; wind energy conversion systems; transcendental equation; WECS; generalised Lambert W-function; maximum power tracking; lower torque modes; torque balance condition

Subjects: DC-DC power convertors; Asynchronous machines; Wind power plants

References

    1. 1)
      • 28. Şahin, A.D.: ‘Progress and recent trends in wind energy’, Prog. Energy Combust. Sci., 2004, 30, (5), pp. 501543.
    2. 2)
      • 9. Bubshait, A.S., Mortezaei, A., Simões, M.G., et al: ‘Power quality enhancement for a grid connected wind turbine energy system’, IEEE Trans. Ind. Appl., 2017, 53, (3), pp. 24952505.
    3. 3)
      • 16. Bossoufi, B., Karim, M., Lagrioui, A., et al: ‘Observer backstepping control of DFIG-generators for wind turbines variable-speed: FPGA-based implementation’, Renew. Energy, 2015, 81, pp. 903917.
    4. 4)
      • 23. Krause, P., Wasynczuk, O., Sudhoff, S.D., et al: ‘Analysis of electric machinery and drive systems’, vol. 75 (John Wiley & Sons, Hoboken, NJ, USA, 2013).
    5. 5)
      • 6. Dadhania, A., Venkatesh, B., Nassif, A., et al: ‘Modeling of doubly fed induction generators for distribution system power flow analysis’, Int. J. Electr. Power Energy Syst., 2013, 53, pp. 576583.
    6. 6)
      • 35. Maignan, A., Scott, T.C.: ‘Fleshing out the generalized Lambert W function’, ACM Commun. Comput. Algebra, 2016, 50, (1/2), pp. 4560.
    7. 7)
      • 26. Wasynczuk, O., Man, D., Sullivan, J.: ‘Dynamic behavior of a class of wind turbine generators during random wind fluctuations’, IEEE Trans. Power Appar. Syst., 1981, PAS-100, (6), pp. 28372845.
    8. 8)
      • 8. Bianchi, F., Battista, H.D., Mantz, R.: ‘Wind turbine control systems: principles, modelling and gain scheduling design’ (Springer Verlag, Berlin, Germany, 2007).
    9. 9)
      • 24. Heier, S.: ‘Grid integration of wind energy: onshore and offshore conversion systems’ (John Wiley & Sons, Chichester, UK, 2014).
    10. 10)
      • 4. Bricma, Z., Cepin, M.: ‘Estimating the additional operating reserve in power systems with installed renewable energy sources’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 654664.
    11. 11)
      • 1. Nikkhah, S., Rabiee, A.: ‘Optimal wind power generation investment, considering voltage stability of power systems’, Renew. Energy, 2018, 115, pp. 308325.
    12. 12)
      • 18. Tang, C., Guo, Y., Jiang, J.: ‘Nonlinear dual-mode control of variable-speed wind turbines with doubly fed induction generators’, IEEE Trans. Control Syst. Technol., 2011, 19, (4), pp. 744756.
    13. 13)
      • 15. Liu, J., Meng, H., Hu, Y., et al: ‘A novel MPPT method for enhancing energy conversion efficiency taking power smoothing into account’, Energy Convers. Manage., 2015, 101, pp. 738748.
    14. 14)
      • 29. Santos-Martin, D., Arnaltes, S., Amenedo, J.R.: ‘Reactive power capability of doubly fed asynchronous generators’, Electr. Power Syst. Res., 2008, 78, (11), pp. 18371840.
    15. 15)
      • 2. Al-Sharafi, A., Sahin, A.Z., Ayar, T., et al: ‘Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia’, Renew. Sust. Energy Rev., 2017, 69, pp. 3349.
    16. 16)
      • 30. Lopez-Garcia, I.: ‘Control basado en pasividad de generadores de induccion con rotor devanado’. PhD thesis, Universidad Nacional Autonoma de Mexico. Programa de Posgrado en Ingenieria, 2012.
    17. 17)
      • 19. Lopez-Garcia, I., Espinosa-Perez, G., Cardenas, V.: ‘Power control of a doubly-fed induction generator connected to the power grid’, Int. J. Control, 2017,, pp. 123, https://doi.org/10.1080/00207179.2017.1397752.
    18. 18)
      • 3. Cardenas, R., Perez, M.A., Clare, J.C.: ‘Guest editorial control and grid integration of mw-range wind and solar energy conversion systems’, IEEE Trans. Ind. Electron., 2017, 64, (11), pp. 87868789.
    19. 19)
      • 14. Meng, W., Yang, Q., Sun, Y.: ‘Guaranteed performance control of DFIG variable-speed wind turbines’, IEEE Trans. Control Syst. Technol., 2016, 24, (6), pp. 22152223.
    20. 20)
      • 31. López-Garca, I., Espinosa-Pérez, G., Siguerdidjane, H., et al: ‘On the passivity-based power control of a doubly-fed induction machine’, Int. J. Electr. Power Energy Syst., 2013, 45, (1), pp. 303312.
    21. 21)
      • 12. Diaz, M., Cardenas, R., Espinoza, M., et al: ‘Control of wind energy conversion systems based on the modular multilevel matrix converter’, IEEE Trans. Ind. Electron., 2017, 64, (11), pp. 87998810.
    22. 22)
      • 32. Scott, T.C., Mann, R., Martinez Ii, R.E.: ‘General relativity and quantum mechanics: towards a generalization of the Lambert W function a generalization of the Lambert W function’, Appl. Algebra Eng. Commun. Comput., 2006, 17, (1), pp. 4147.
    23. 23)
      • 5. Patel, M.R.: ‘Wind and solar power systems: design, analysis, and operation’ (CRC, Boca Raton, FL, USA, 2006).
    24. 24)
      • 11. Mitra, A., Chatterjee, D.: ‘A sensitivity based approach to assess the impacts of integration of variable speed wind farms on the transient stability of power systems’, Renew. Energy, 2013, 60, pp. 662671.
    25. 25)
      • 10. Jafarian, M., Ranjbar, A.: ‘The impact of wind farms with doubly fed induction generators on power system electromechanical oscillations’, Renew. Energy, 2013, 50, pp. 780785.
    26. 26)
      • 34. Mezö, I., Keady, G.: ‘Some physical applications of generalized Lambert functions’, Eur. J. Phys., 2016, 37, (6), p. 065802.
    27. 27)
      • 25. Kundur, P., Balu, N.J., Lauby, M.G.: ‘Power system stability and control’, vol. 7 (McGraw-Hill, New York, 1994).
    28. 28)
      • 22. Bhatt, P., Roy, R., Ghoshal, S.: ‘Dynamic participation of doubly fed induction generator in automatic generation control’, Renew. Energy, 2011, 36, (4), pp. 12031213.
    29. 29)
      • 20. Mezö, I., Baricz, Á.: ‘On the generalization of the Lambert W-function’, Trans. Am. Math. Soc., 2017, 369, (11), pp. 79177943.
    30. 30)
      • 13. Yang, B., Zhang, X., Yu, T., et al: ‘Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine’, Energy Convers. Manage., 2017, 133, pp. 427443.
    31. 31)
      • 17. Taraft, S., Rekioua, D., Aouzellag, D., et al: ‘A proposed strategy for power optimization of a wind energy conversion system connected to the grid’, Energy Convers. Manage., 2015, 101, pp. 489502.
    32. 32)
      • 27. Slootweg, J., De Haan, S., Polinder, H., et al: ‘General model for representing variable speed wind turbines in power system dynamics simulations’, IEEE Trans. Power Syst., 2003, 18, (1), pp. 144151.
    33. 33)
      • 33. Scott, T.C., Fee, G., Grotendorst, J.: ‘Asymptotic series of generalized Lambert W function’, ACM Commun. Comput. Algebra, 2014, 47, (3/4), pp. 7583.
    34. 34)
      • 21. Kaźmierkowski, M.P., Krishnan, R.: ‘Control in power electronics: selected problems’ (Academic Press, San Diego, CA, USA, 2002).
    35. 35)
      • 7. Cardenas, R., Pena, R., Alepuz, S., et al: ‘Overview of control systems for the operation of DFIGS in wind energy applications’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 27762798.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1212
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1212
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading